Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: T. Papp x
  • Refine by Access: All Content x
Clear All Modify Search

Cells of the astaxanthin-producing yeast Xanthophyllomyces dendrorhous were subjected to successive 60 Co and UV irradiation. Colonies exhibiting increased pigmentation were recovered from different non-selective plates. Mutant strains were subcultured to ensure their genetic homogeneity and their pigment production was characterized. Analysis of the metabolic patterns of 7 pigment-overproducing mutants (derived from 3 wild-type parental isolates) revealed different patterns of carotenoid production: the greatest increase in astaxanthin production (6.7-fold) was found for X. dendrorhous strain ATCC 24229/S119 (274 μ g g −1 dry weight). Mutant strains with increased total carotenoid content, but without significant change in astaxanthin production, were also isolated.

Restricted access

The effect of reduction of pressure on the shapes of the TG, DTG and DTA curves and the mass-spectra of hydroxide and carbonate phases was investigated in some typical Hungarian red muds. The pressure change caused different decomposition rates of the phases and resulted in better separation of the overlapping thermal curves; this led to advantages as regards phase analysis. For phase analysis the red muds were extracted with water, and the extracts and solid residues were identified by IR- and X-ray methods.

Restricted access
Acta Microbiologica et Immunologica Hungarica
Authors:
Ildikó Nyilasi
,
T. Papp
,
M. Takó
,
Erzsébet Nagy
, and
Cs. Vágvölgyi

Iron is an essential nutrient for most organisms because it serves as a catalytic cofactor in oxidation-reduction reactions. Iron is rather unavailable because it occurs in its insoluble ferric form in oxides and hydroxides, while in serum of mammalian hosts is highly bound to carrier proteins such as transferrin, so the free iron concentration is extremely low insufficient for microbial growth. Therefore, many organisms have developed different iron-scavenging systems for solubilizing ferric iron and transporting it into cells across the fungal membrane. There are three major mechanisms by which fungi can obtain iron from the host: (a) utilization of a high affinity iron permease to transport iron intracellularly, (b) production and secretion of low molecular weight iron-specific chelators (siderophores), (c) utilization of a hem oxygenase to acquire iron from hemin. Patients with elevated levels of available serum iron treated with iron chelator, deferoxamine to remedy iron overload conditions have an increased susceptibility of invasive zygomycosis. Presumably deferoxamine predisposes patients to Zygomycetes infections by acting as a siderophore. The frequency of zygomycosis is increasing in recent years and these infections respond very poorly to currently available antifungal agents, so new approaches to develop strategies to prevent and treat zygomycosis are urgently needed. Siderophores and iron-transport proteins have been suggested to function as virulence factors because the acquisition of iron is a crucial pathogenetic event. Biosynthesis and uptake of siderophores represent possible targets for antifungal therapy.

Restricted access
Restricted access

The complete ITS (internal transcribed spacer) region coding the ITS1, the ITS2 and the 5.8S rDNA was amplified by polymerase chain reaction from two strains of Gilbertella persicaria, six strains in the Mucoraceae (Mucor piriformis, M. rouxii, M. circinelloides, Rhizomucor miehei, R. pusillus and R. tauricus) and four strains representing three species of the Choanephoraceae (Blakeslea trispora, Choanephora infundibulifera and Poitrasia circinans). Sequences of the amplified DNA fragments were determined and analysed. G. persicaria belongs to the monogeneric family (Gilbertellaceae), however, originally it was described as Choanephora persicaria. The goal of this study was to reveal the phylogenetic relationship among fungi belonging to Gilbertellaceae, Choanephoraceae and Mucoraceae. Our results support that the “intermediate” position of this family is between Choanephoraceae and Mucoraceae.

Restricted access

The mortality rates of fungal infections that affect the central nervous system are high in consequence of the absence of effective antifungal drugs with good penetration across the blood-brain barrier and the blood-cerebrospinal fluid barrier. In the present work in vitro antifungal activities of three good penetrating non-antifungal drugs (amantadine hydrochloride, R-(-)-deprenyl hydrochloride, valproic acid sodium salt) and their combinations with three antifungal agents (amphotericin B, itraconazole, terbinafine) were tested with broth microdilution method against eight fungal isolates belonging to Zygomycetes (Lichtheimia corymbifera, Rhizomucor miehei, Rhizopus microsporus var. rhizopodiformis, Saksenaea vasiformis) and Aspergillus genus (A. flavus, A. fumigatus, A. nidulans, A. terreus). These are known to be possible agents of central nervous fungal infections (CNFI). When used alone, the investigated nonantifungal drugs exerted slight antifungal effects. In their combinations with antifungal agents they acted antagonistically, additively and synergistically against zygomyceteous isolates. Primarily antagonistic interactions were revealed between the investigated drugs in case of Aspergilli, but additive and synergistic interactions were also observed. The additive and synergistic combinations allowed the usage of reduced concentrations of antifungal agents to inhibit the fungal growth in our study. These combinations would be a basis of an effective, less toxic therapy for treatment of CNFI.

Restricted access

The in vitro antifungal activity of different statins and the combinations of the two most effective ones (fluvastatin and rosuvastatin) with amphotericin B were investigated in this study on 6 fungal isolates representing 4 clinically important genera, namely Absidia, Rhizomucor, Rhizopus and Syncephalastrum . The antifungal effects of statins revealed substantial differences. The synthetic statins proved to be more effective than the fungal metabolites. All investigated strains proved to be sensitive to fluvastatin. Fluvastatin and rosuvastatin acted synergistically and additively with amphotericin B in inhibiting the fungal growth in clinically available concentration ranges. Results suggest that statins combined with amphotericin B have a therapeutic potential against fungal infections caused by Zygomycetes species.

Restricted access
Restricted access

The present study examined the effect of nerve growth factor (NGF) on in vitro maturation (IVM), in vitro fertilisation (IVF) and subsequent embryonic development of porcine oocytes. Cumulus-oocyte complexes were cultured with or without 1.0 ng/ml NGF for 40 h. After IVF, they were cultured in vitro for 6 days. After 10 and 20 h of IVM, there was no difference in nuclear status between the NGF-treated and control oocytes. Significant differences were detected in nuclear progression of oocytes matured in the presence or absence of NGF at 30 h of culture. A higher proportion of NGF-treated oocytes were at M-II stage compared to the control. Nevertheless, at the end of the 40-h IVM period, there was no difference in the proportion of M-II stage oocytes between the NGF-treated and control groups. NGF in IVM medium did not influence the developmental competence of putative embryos. Most embryos remained at the 2- to 4-cell stage; however, a significant amount of embryos reached the morula stage both in the NGF and the control groups. These results suggest that NGF during IVM accelerates nuclear progression of porcine oocytes by enhancing the post-diakinetic events of meiosis.

Restricted access