Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: T. Szegi x
  • Refine by Access: All Content x
Clear All Modify Search

The current Hungarian Soil Classification System (HSCS) was elaborated during the 1960s, based on the genetic principles of Dokuchaev. It was developed before sufficient data and modern data processing tools were available and served different purposes than current users need or apply it for.The central unit is the soil type, grouping soils that were believed to have developed under similar soil-forming factors and processes. The major soil type is the highest category that groups soils based on climatic, geographical and genetic bases. Subtypes and varieties are distinguished according to the assumed dominance of soil-forming processes and observable/measurable morphogenetic properties. STEFANOVITS (1963) defined the 23 soil-forming processes that have a dominant impact on the differentiation of the 39 soil types of the system.Based on accumulated data and experience, as well as on numerical tools for defining taxonomic relationships a modernization process was carried out. The process included: linking processes to diagnostics, review and numerical study of similarities and dissimilarities of existing units, development of new central units, development of a computer assisted key, and definition of methodology to derive the lower level units. The new, 15 soil types are defined by stronger morphogenetic and measurable criteria, but with the application of legacy data and the developed key, the earlier units can be converted to the new ones, hence the value of legacy data can be preserved.

Restricted access
Agrokémia és Talajtan
R. K. Gangwar
M. Makádi
M. Fuchs
Á. Csorba
E. Michéli
I. Demeter
, and
T. Szegi

Soil samples were collected from salt-affected soils (Solonetz) under different land uses, namely arable (SnA) and pasture (SnP), to investigate the effects of land use on microbiological [basal soil respiration (BSR), microbial biomass carbon (MBC), dehydrogenase activity (DHA) and phosphatase activity] and chemical properties [organic carbon (OC), humic ratio (E4/E6), pH, electrical conductivity (EC), ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N), available forms of phosphorus (P2O5), potassium (K2O), calcium (Ca2+), magnesium (Mg2+), sodium (Na+)] and on the moisture content.

The results showed that the two sites, SnA and SnP, were statistically different from each other for all the microbiological and chemical parameters investigated except Na+ and moisture content. Higher values of MBC (575.67 μg g-1), BSR (9.71 μg CO2 g-1 soil h-1), DHA (332.76 μg formazan g-1 day-1) and phosphatase activity (0.161 μmol PNP g-1 hr-1) were observed for the SnP soil. Great heterogeneity was found in SnP in terms of microbiological properties, whereas the SnA plots showed more homogeneous microbiological activity due to ploughing. 75.34% of variance was explained by principal component one (PC1), which significantly separated SnA and SnP, especially on the basis of soil MBC and P2O5. Moreover, it was concluded that the pasture land (SnP) was microbiologically more active than arable land (SnA) among the Hungarian salt-affected soils investigated.

Restricted access