Search Results

You are looking at 1 - 10 of 42 items for

  • Author or Editor: T. Yoshida x
  • Refine by Access: All Content x
Clear All Modify Search

Summary  

We investigated the influence of ionic strength on migration behaviors of Sr and Eu in the presence of humic acid (HA). The breakthrough curve of Sr through a quartz sand column in the presence of HA was identical to that in the absence of HA. Europium migration in quartz sand was enhanced by the presence of HA at low ionic strength. At high ionic strength, Eu migration in the presence of HA was hindered compared to that in the absence of HA. Adsorption of europium on quartz sand in the absence of HA decreases with increased ionic strength.

Restricted access

Abstract  

Cellulose acetate-based polycaprolactones (CAPCL's) were synthesized by the polymerization of -caprolactone which was initiated by non-substituted OH group in cellulose acetate. The CL/OH (mol mol–1) ratios of the CAPCL's were changed from 2 to 20. Thermal and viscoelastic properties of the CAPCL sheets were studied by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Glass transition, cold crystallization and melting were determined by DSC. Dynamic modules (E'), dynamic loss modules (E'') and tan were measured in a temperature range from –150 to 50°C by DMA. Apparent activation energy of a dispersion was calculated from the frequency dependency of E'' peak temperature. It was found that the main chain motion of both CA and PCL is observed in a CL/OH ratio from 0 to 10 mol mol–1. However, when CL/OH ratio exceeds 10 mol mol–1, the crystalline region which is rearranged by the PCL chain association is observed and only the main chain motion of PCL can be detected.

Restricted access

Abstract  

The present work is devoted to the investigation of the effective use of radioactive waste for H2 production by g-radiolysis of water, through both experiments and simulation. We have suceeded in improving the efficiency of hydrogen production by g-radiolysis of water via the conversion of g-rays to lower energy electrons and photons by introducing high Z metals, such as Ta, Pd, W and Pb, into water. We have also used exothermic hydrogen occluders like Ta and Pd to absorb the produced hydrogen, suppressing recombination of hydrogen to water. Surface oxidation which must be avoided, was also prevented using Pd.

Restricted access

Abstract  

The transition and the change in pore morphology of a porous alumina membrane prepared by anodically oxidizing aluminum in sulfuric acid were studied mainly by TG-DTA, TMA, dilatometry and TEM. At ca. 1243 K, TMA showed an expansion followed by contraction; the CO2 and SO2 gases were quickly discharged, and the pore morphology of the as-prepared porous membrane (ca 150 mm-t, with pores ca 25 nm in diameter and containing ca 11% by mass of SO2) showed an abrupt change, but the pores were retained to ca. 1573 K. Sulfur incorporated in the membrane was lost in two stages, i.e., at ca 1243 K and in a range up to 1373 K. Isothermal measurements revealed the complex crystallization of the amorphous phase into polycrystalline phase.

Restricted access

Abstract  

Water molecules in hydrogels were classified into three categories according to phase transition behavior; non-freezing, freezing bound and free water. Melting, crystallization, and glass transition of water in hydrogels reflected the state of the water interacting with polysaccharides. Freezing bound water formed metastable ice by slow cooling and formed amorphous ice by quenching. From the isothermal crystallization measurement, nucleation rate and crystal growth rate were obtained. The crystal growth rate of freezing bound water was about ten times slower than that of free water. The DSC characterization of water in hydrogels was summarized.

Restricted access

Abstract  

The degradation and mineralization of dibutyl phthalate (DBP), one of endocrine disruptors, by g-ray irradiation were demonstrated. The degradation was enhanced by the effective energy conversion of g-rays to low-energy electrons and photons with the assistance of the interactions between g-rays and metals, which is especially in the case of high Z materials effective. Numerical simulations using EGS code supported the experimental results. Improvements of the energy conversion process are also suggested by controlling the shape of the metal and its spatial configuration in the DBP solution.

Restricted access

Abstract  

Thermal stability of para (p--) and ortho (o-) isomers was investigated by CRTG and reaction kinetic analysis. The temperature started the mass decrease of o-isomer was about 20C lower than that of p-isomer by CRTG. The activation energies of thermal decomposition of o- and p-isomers were 136.9 and 153.4 kJ mol–1, respectively. The effect of steric hindrance on heat of formation was calculated by AM1 method using Win MOPAC3.0 for the model compound of p- and o-isomers. The lower stability of o-isomer was the results of the steric hindrance between the ethylene unit of aromatic ring and three alkyl chains.

Restricted access

Abstract  

Phase transition process of PEOm-b-PMA(Az)n was investigated by the simultaneous DSC-XRD measurement using the synchrotron radiation facility. Four endothermic DSC peaks were observed during heating process. These DSC peaks were assigned to the melting of PEO, the transition from SmX, which is a mixture of super-cooled SmC and crystal, to SmC, from SmC to SmA, and from SmA to isotropic liquid state as determined by XRD profiles. In SmC phase, the liner expansion coefficient calculated from the spacing variation of the smectic layer distance was larger than that of the other phases. This result reflected the fact azobenzene moieties in the long-side chains of PMA(Az)n forming the smectic layers and then they were tilted and stood up during the heating process.

Restricted access

Abstract  

The mixing state of poly(vinylidene fluoride) (PVDF) and two amorphous polymers,poly(methyl methacrylate) (PMMA) and poly(isopropyl methacrylate) (PiPMA) were investigated from the viewpoint of crystallization dynamics using simultaneous DSC-FTIR method. The crystallization rate (R *) and the growth rate of trans-gauche-trans-gauche’ (TGTG’) conformation (Rc *) depended on both the blend content (ϕ) and the crystallization temperature for PVDF/PMMA. The temperature and ϕ dependency of R * and Rc * were almost the same for PVDF/PMMA. However, R * and Rc * depended scarcely on f for PVDF/PiPMA, and the temperature dependency of R * differed from that of Rc * for PVDF/PiPMA. These results showed that PVDF and PMMA were miscible on molecular level, and that PVDF/PiPMA was immiscible and the concentration fluctuation existed in the PVDF-rich phase.

Restricted access

Abstract  

The simultaneous DSC-FTIR was used for the observation of crystallization and melting of poly(vinylidene fluoride) (PVDF) and its blends with poly(methyl methacrylate) (PMMA) and poly(ethyl methacrylate) (PEMA). The isothermal crystallization was carried out under the condition of both α-form and γ-form crystallized competitively. The crystal growth rate of α -form and γ -form were evaluated from the absorbance changes at 795 cm-1 (α -form, CH2 rocking) and 810 cm-1 (γ -form, CH2 rocking) obtained by the DSC-FTIR. The crystal growth rate of γ -form decreased at the same crystallization temperature in the order of PVDF/syn-PMMA, PVDF/PEMA and PVDF/at-PMMA, which was corresponding to the order of interaction parameter. The mechanism of α -g transition of PVDF in the miscible blends with at-PMMA, syn-PMMA and PEMA was evaluated from the relationship between the decrease of α -form and the increase of γ -form. The critical crystallization temperature, at which the transformation from α -form to γ -form proceeded only in the solid state, shifted to higher temperature side in the order of interaction parameter.

Restricted access