Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: Tibor Magyar x
Clear All Modify Search

The 16 somatic serotype type strains and 60 field isolates of Pasteurella multocida, representing various avian species and geographic regions in Hungary, were characterised by PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of the ompH gene with DraI restriction endonuclease. The type strains yielded eight different (I-VIII) profiles. Strains whose PCR fragment was uncut by DraI (profile IV) could be differentiated with HindIII and PvuII restriction endonucleases. Five of the eight PCR-RFLP profiles (I, III, V, VI and VII) were detected among the field strains. Only a correlation of limited strength was found between the classical somatic serotypes and the PCR-RFLP profiles. However, the results confirmed that molecular methods could confidently distinguish serotype A:1 strains from the other serotypes. Moreover, the specific relationship between somatic serotypes and PCR-RFLP types among isolates from turkey raises the possibility of the existence of host-specific clones within the P. multocida population.

Restricted access

The emergence of simultaneous resistance to multiple classes of antibiotics presents an increasing threat. Plasmid-borne multiresistance and integrative conjugative elements have been reported in Pasteurella multocida. We report an alternative strategy for the development of multiresistance observed in a P. multocida strain (Pm238) isolated from calf pneumonia. We identified genes integrated into the chromosomal DNA without known integrative and conjugative elements. These genes conferred resistance to streptomycin (strA), tetracycline (tetB), chloramphenicol (catAIII), and sulphonamides (sulII). We also detected mutation in the quinolone-resistance-determining regions of parC. No plasmids could be isolated from strain Pm238. These results suggest that P. multocida can accumulate multiple resistance determinants on the chromosome as single genes.

Restricted access

Anatipestifer disease is a contagious disease caused by Riemerella anatipestifer, affecting primarily ducks, geese and turkeys, and characterised by listlessness, diarrhoea, sneezing, nasal discharge, and nervous signs. Sporadically, it occurs in a wide range of other domesticated and wild birds as well. The incidence and characteristics of the disease seen in the three main host species are summarised based on birds submitted for routine laboratory investigation in Hungary over the period 2010–2014. The infection was diagnosed in a higher percentage in geese (9.9%) and ducks (7.5%). It occurred in 5-day-old to 17-week-old geese and 3- to 6.5-week-old ducks, respectively. The pathological lesions were comparable in these two species: enlarged spleen, serofibrinous pericarditis, perihepatitis, airsacculitis, catarrhal enteritis, subcutaneous oedema and hyperaemia over the cranium, mucopurulent exudate in the nasal cavity and occasionally pneumonia, conjunctivitis, purulent arthritis and caseous salpingitis. In some cases, R. anatipestifer produced only secondary lesions, which complicated other diseases such as circovirus infection, mycotoxicosis, mycoplasmosis, or Derzsy’s disease. In turkeys, the disease occurred rarely (0.5%) and at an older age (12 to 19 weeks). The lesions most frequently seen were purulent osteomyelitis of the cranium and seropurulent meningitis. Purulent osteomyelitis in the cranium caused by R. anatipestifer infection had not been reported in turkeys previously. To various extents, other local lesions such as serofibrinous pericarditis, airsacculitis, arthritis, and in one case septicaemia were also observed. The high incidence of the disease in waterfowl underlines the importance of appropriate treatment and prevention that should be based on accurate diagnosis and antimicrobial susceptibility testing, proper biosecurity and vaccination with regard to the serotype(s) present on the farm.

Restricted access

Atrophic rhinitis (AR) is a widespread and economically important disease of swine caused by Bordetella bronchiseptica and Pasteurella multocida . It can be controlled by vaccination. This study investigates the effect of altering the composition (adjuvants and/or addition of formalin-inactivated P. multocida toxin, fPMT) of conventional vaccines on the serological profile and on protection against AR in swine. A significantly higher B. bronchiseptica specific antibody titre was detected for vaccines with novel immunostimulants, the best being Montanide IMS 1313 (1:630 compared to 1:274 obtained with alum). The highest B. bronchiseptica antibody titre was demonstrated for a combination of B. bronchiseptica — fPMT, while PMT antibody titre was highest for monovalent fPMT (both adjuvanted with IMS 1313). The AR-specific antibodies were transmitted from dams to their offspring in similar titres and with the same hierarchy of effectiveness. After a B. bronchiseptica — P. multocida bacterial challenge, piglets from dams vaccinated with fPMT combined with B. bronchiseptica or B. bronchiseptica — P. multocida bacterins showed the lowest nasal lesions scores (4.5 and 3.2, respectively, out of a possible maximum score of 18). These combinations, both of which were adjuvanted with IMS 1313, gave the best protection against experimentally induced AR. Our results show that the adjuvant and the antigen composition of the vaccine strongly affect seroconversion, and that the AR-specific antibody titre does not necessarily correlate with the degree of protection.

Restricted access

The antimicrobial susceptibility of 19 Bordetella avium and 36 Ornithobacterium rhinotracheale strains was tested by the Kirby-Bauer disk diffusion method, and the minimal inhibitory concentrations (MIC) of amoxicillin, doxycycline and erythromycin were also determined. Most O. rhinotracheale strains were resistant to nalidixic acid, sulphamethoxazole–trimethoprim and gentamicin, and were susceptible to ampicillin, chloramphenicol, spectinomycin and tilmicosin. All B. avium strains were resistant to ceftiofur and lincomycin and susceptible to doxycycline, gentamicin, polymyxin B, spectinomycin and sulphonamides. The MICs ranged widely for all three antibiotics tested against O. rhinotracheale strains, from 0.12 μg/ml to 32 μg/ml for amoxicillin and erythromycin, and from 0.6 μg/ml to 32 μg/ml for doxycycline. For B. avium isolates, the MIC values ranged from ≤ 0.03 μg/ml to 1 μg/ml for amoxicillin, from ≤ 0.03 μg/ml to 0.12 μg/ml for doxycycline and from 8 μg/ml to 16 μg/ml for erythromycin. These findings support the idea that the use of antibiotics in a region or a farm may affect antimicrobial resistance and underline the need for prudent application of antibiotic therapy based on proper antimicrobial susceptibility testing.

Open access

Abstract

In this paper we report the phenotypic and partial genetic characterisation of a novel bacterium strain isolated from a cat with severe nephritis. Multilocus sequence analysis was performed on the 16S rRNA and three housekeeping (recN, rpoB, infB) gene sequences obtained by PCR. In accordance with the results of phenotypic tests, the phylogenetic analyses confirmed the relatedness of the new strain (6036) to the family Pasteurellaceae. On the phylogenetic trees, strain 6036 appeared in a separate branch, closest to that of the type species (Frederiksenia canicola) of the genus Frederiksenia. These two bacteria shared 95.14 and 76.88% identity in their partial 16S rRNA and recN gene sequences, respectively. The rpoB- and infB-based phylogenetic analyses indicated that strain 6036 is most closely related to Bibersteinia trehalosi (with 90.58% identity) and [Haemophilus] felis ATCC 49733 (89.50% identity), respectively. The predicted genome identity values, based on the recN gene sequences, suggested that strain 6036 can be classified into the genus Frederiksenia as a novel species. A PCR method, specific to strain 6036, was developed to allow its rapid and accurate identification and differentiation from F. canicola and other species of Pasteurellaceae. The minimal inhibitory concentrations of 18 antimicrobial agents for strain 6036 were also determined.

Open access
Authors: Bernadett Khayer, Zsuzsanna Rónai, Enikő Wehmann and Tibor Magyar

Four urease-negative Bordetella bronchiseptica isolates originating from pigs were examined by phenotypic and molecular methods. The phenotypic properties of the isolates were in harmony with the data of the literature, except for the lack of urease activity in conventional tube test, API 20 NE and Diatabs™ assays. Using genotypic methods, the urease-negative isolates did not differ from the urease-positive reference strain. They were positive in species-specific and ureC PCR, and all strains showed uniform bands in PCR-RFLP studies of flaA genes. The reason for the lack of urease activity, a characteristic considered speciesspecific for B. bronchiseptica, needs to be studied further. The finding underlines the significance of genotyping when the phenotypic identification of B. bronchiseptica seems questionable.

Restricted access

Riemerella anatipestifer causes anatipestifer disease in many avian species. A total of 185 R. anatipestifer strains isolated in Hungary between 2000 and 2014 from geese and ducks were tested against 13 antibiotics (ampicillin, doxycycline, enrofloxacin, erythromycin, florfenicol, flumequine, gentamicin, penicillin, spectinomycin, streptomycin, sulphamethoxazole—trimethoprim, sulphonamide compounds, and tetracycline) by the Kirby-Bauer disk diffusion method. The majority of the strains were susceptible to florfenicol (97.9%), ampicillin (95.1%), penicillin (93%), sulphamethoxazole—trimethoprim (92.4%), and spectinomycin (86.5%). The highest resistance rates were observed for flumequine, tetracycline, erythromycin and streptomycin (94%, 91.4%, 75.1% and 71.4% resistance, respectively). The resistance patterns showed some variation depending on the geographical origin of the strains. The average rate of extensive drug resistance was 30.3%, and its proportion tended to increase in the period examined.

Restricted access

Sixty-one avian strains of Pasteurella multocida were characterised and compared by biochemical tests, capsular PCR typing and ERIC-PCR. The strains were recovered from various avian species (goose, duck, Muscovy duck, turkey, chicken and pheasant) and represented different geographic locations in Hungary. Forty-two strains (69%) were identified as P. multocida subsp. multocida and 19 strains (31%) as P. multocida subsp. septica . The strains were grouped into 7 different biovars (1, 2, 3, 4, 5, 6 and 7). The most prevalent biovars were 1 (25%), 3 (21%) and 6 (21%). Most of the duck isolates (90%) belonged to biovar 1 or 6. The most frequent capsular type was A (93.5%). Type F represented only a small number (6.5%) of the strains. Other capsular types were not identified. From the 61 isolates 24 different fingerprint patterns were generated by ERIC-PCR assay. Based on cluster analysis the strains could be grouped into four larger and four mini-clusters that showed considerable correlation with the geographical origin and the host species. The results indicate that ERIC-PCR may be a suitable technique for studying the host adaptation of P. multocida and the epidemiology of fowl cholera.

Restricted access
Authors: Tibor Magyar, Barbara Ujvári, Levente Szeredi, Norbert Virsinger, Ervin Albert, Zoltán Német, Edit Csuka and Imre Biksi

This paper reports an outbreak of haemorrhagic septicaemia caused by Pasteurella multocida B:2 in beef calves, a disease that has not been described in the Hungarian literature since 1943, and has not been reported to the World Organisation For Animal Health (OIE) since 1970. Acute haemorrhagic septicaemia was confirmed in beef calves on one small farm, and was suspected on two further nearby holdings with concomitant unexplained losses. The source of the infection could not be determined. Apart from a short duration of depression and loss of appetite, the affected calves developed characteristic distal limb oedema. Gross findings in two calves submitted for laboratory examinations included subcutaneous oedema and haemorrhages on serous membranes, and in one case severe pharyngeal lymph node enlargement was observed. Histological examinations revealed lesions characteristic of septicaemia. Moderate to large amounts of Pasteurella antigens were detected in all organs tested by immunohistochemistry. Two isolates of P. multocida (Pm240, Pm241) were cultured from these cases and examined in detail. These were identified as P. multocida ssp. multocida biovar 3. Both were toxA negative and belonged to serotype B:2. Multilocus sequence typing was used to assign these to a new sequence type (ST64) that is closely related to other haemorrhagic septicaemia causing strains of P. multocida regardless of the host.

Restricted access