# Search Results

## You are looking at 1 - 5 of 5 items for

• Author or Editor: U. Stadtmüller
• Refine by Access: All Content
Clear All Modify Search

## Asymptotic properties of nonparametric curve estimates

Periodica Mathematica Hungarica
Author:
Restricted access

## Kernel approximations of a wiener process

Periodica Mathematica Hungarica
Author:
Let a standard Wiener processW(.) be given on the real line. We investigate the asymptotic behaviour of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$X_h (x) = h^{ - 1} \smallint K((\upsilon - x)h^{ - 1} )W(\upsilon )d\upsilon - W(x),$$ \end{document}
ash → 0 +, that is the deviation of a kernel approximation ofW(.) from the process itself. For example, we confirm, under certain conditions onK, a conjecture of P. Révész proving that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathop {\lim \sup }\limits_{h \to 0 + 0 \leqslant x \leqslant 1} \frac{{\left| {X_h (x)} \right|}}{{\sqrt {h \log h^{ - 1} } }} \underline{\underline {a.s.}} c,$$ \end{document}
with an explicit constantc = c(K).
Restricted access

## One-sided Tauberian conditions and double sequences

Periodica Mathematica Hungarica
Author:

## Abstract

We give a theorem of Vijayaraghavan type for summability methods for double sequences, which allows a conclusion from boundedness in a mean and a one-sided Tauberian condition to the boundedness of the sequence itself. We apply the result to certain power series methods for double sequences improving a recent Tauberian result by S. Baron and the author [4].

Restricted access

## On the strong law of large numbers for delayed sums and random fields

Acta Mathematica Hungarica
Authors:
A. Gut
and

## Abstract

A paper by Chow [3] contains (i.a.) a strong law for delayed sums, such that the length of the edge of the nth window equals n α for 0 < α < 1. In this paper we consider the kind of intermediate case when edges grow like n=L(n), where L is slowly varying at infinity, thus at a higher rate than any power less than one, but not quite at a linear rate. The typical example one should have in mind is L(n) = log n. The main focus of the present paper is on random field versions of such strong laws.

Restricted access

## Тауберовы теоремы дря вэвещенных средних двоиных последователяностеи

Analysis Mathematica
Authors: