Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: V. Altbäcker x
Clear All Modify Search

We studied the long-term impact of wildfire on the vegetation dynamics of sand grasslands in a forest-steppe vegetation mosaic in Central Hungary (Kiskunság). Long-term permanent quadrat monitoring was carried out from 1997 to 2008. We sampled the forest-steppe mosaic both in burnt and unburnt areas in 100 patches altogether using 1 m × 1 m quadrats. The effect of fire and precipitation on vegetation dynamics was characterized by patch type transitions between years. Patch types were defined by means of Cocktail method. Nine patch types of sand grasslands were altogether identified. The least productive patch types, bare soil and cryptogam dominance, did not occur in the burnt patches, while annual dominated patch type appeared only in burnt patches. The frequencies of patch type changes were significantly higher in burnt patches than in unburnt ones, independently on time after fire. All the eight patch types found in the unburnt patches proved permanent, while in the burnt patches only four of seven were so. The relative frequency of patch type changes did not correlate with precipitation in the vegetation period in the unburnt patches, while positively correlated in the burnt patches. It was concluded that the long-term difference in grassland dynamics between the unburnt and burnt patches, i.e., the excess of the patch type transitions in the burnt grasslands, is due to increased drought sensitivity of the grassland, which is the consequence of the elimination of the woody component of the forest-steppe vegetation.

Restricted access
Community Ecology
Authors: F. Samu, F. Kádár, G. Ónodi, M. Kertész, A. Szirányi, É. Szita, K. Fetykó, D. Neidert, E. Botos and V. Altbäcker

Recent environmental and land use changes have made wildfires more frequent in natural habitats of the Kiskunság Sand Ridge on the Hungarian Plain. In a study initiated 2.5 years after an extensive fire that destroyed half of the area of a sand grassland — juniper, poplar forest steppe habitat, we assessed the effects of fire on two generalist arthropod groups: spiders and carabid beetles, as well as on the vegetation. Utilizing the natural experiment situation, samples were taken by pitfalls and suction sampling during a 1.5 years period in four 1 ha blocks, two of which were on the burnt part of the habitat, and two in the unburnt control. At the time of the investigation, in the burnt area the vegetation in the grass layer showed a quick but not complete recovery, while the canopy layer of the juniper bushes burnt down with no sign of regeneration. Carabid beetles and spiders showed differences in recovery after fire. In the carabid assemblages of the burnt parts — compared to the unburnt control — there were over three times more beetles, out of which significantly more represented the macropterous life form and granivorous feeding strategy. There was a higher ratio of pioneer species and a simplified assemblage structure in the burnt area, which meant that the conservation value of the carabid assemblage became lower there. In contrast, for the spider assemblage quantitative changes in abundance and species numbers were not significant, and the differences in species composition did not lead to a decrease in conservation value. Spider species in the burnt plots could not be described as pioneer species, rather they had ecological characteristics that suited the changed vegetation structure. Comparing the two groups, to repopulate the burnt areas, dispersal abilities proved to be more limiting for carabids. However, in both groups a strong assemblage level adaptation could be observed to the postfire conditions. In spiders, species with a stratum preference for the grass layer prevailed, while in carabids individuals with granivore strategy gained dominance. Thus, despite the differences in their speed, basically both assemblages tracked vegetation changes. The effect of future fires will depend on their scale, as well as land-use practices, such as grazing, that interact with fire frequency and recovery. If extensive fires in the future permanently change the vegetation, then it would also lead to a fundamental change in the arthropod fauna.

Restricted access