Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Vichian Laohakosol x
Clear All Modify Search

Abstract  

Criteria for independence, both algebraic and linear, are derived for continued fraction expansions of elements in the field of Laurent series. These criteria are then applied to examples involving elements recently discovered to have explicit series and continued fraction expansions.

Restricted access
Authors: Pakwan Riyapan, Vichian Laohakosol and Tuangrat Chaichana

Summary  

Two types of explicit continued fractions are presented. The continued fractions of the first type include those discovered by Shallit in 1979 and 1982, which were later generalized by Pethő. They are further extended here using Peth\H o's method. The continued fractions of the second type include those whose partial denominators form an arithmetic progression as expounded by Lehmer in 1973. We give here another derivation based on a modification of Komatsu's method and derive its generalization. Similar results are also established for continued fractions in the field of formal series over a finite base field.

Restricted access

A remarkable class of quadratic irrational elements having both explicit Engel series and continued fraction expansions in the field of Laurent series, mimicking the case of real numbers discovered by Sierpiński and later extended by Tamura, is constructed. Linear integer-valued polynomials which can be applied to construct such class are determined. Corresponding results in the case of real numbers are mentioned.

Restricted access