Search Results

You are looking at 1 - 10 of 50 items for

  • Author or Editor: W. Brzyska x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The conditions of formation of Y, La and lanthanide (from Ce(III) to Lu) enanthates were worked out, their composition and their solubilities in water at 291 K were determined, and the conditions of their thermal decomposition were studied. They were prepared as crystalline solids with general formula Ln(C7H13O2)3·nH2O, wheren=2–10. On heating, they decompose in two or three steps. They first lose some water molecules and then decompose to the oxides directly (salts of Y and heavy lanthanides) or via the intermediate formation of Ln2O2CO3 (salts of La, Pr, Nd, Sm and Eu). Only yttrium enanthate dihydrate loses 2 water molecules on heating to form an anhydrous complex, which decomposes directly to Y2O3. The temperatures of dehydration are similar for all complexes (323–343 K), while the temperatures of oxide formation vary irregularly from 823 K for CeO2 to 1078 K for La2O3.

Restricted access

Abstract  

Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 2,5-dichlorobenzoates were prepared and their compositions and solubilities in water at 295 K were determined. The IR spectra and X-ray diffractograms of the obtained complexes were recorded. The complexes of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) were obtained as solids with a 1:2 molar ratio of metal to organic ligand and different degrees of hydration. When heated at a heating rate of 10 K min-1, the hydrated complexes lose some (Co, Zn) or all (Ni, Cu, Cd) of the crystallization water molecules and then decompose to oxide MO (Co, Ni) or gaseous products (Cu, Zn, Cd). When heated at a heating rate of 5 K min-1, the complexes of Ni(II) and Cu(II) lose some (Ni) or all (Cu) of the crystallization water molecules and then decompose directly to MO.

Restricted access

The conditions of thermal decomposition of La, Ce(III), Pr, Nd, Sm, Eu and Gd diglycolates have been studied. On heating, the diglycolates of Ce(III), Pr, Eu and Gd lose crystallization water and yield anhydrous salts, which are then transformed into oxides.

Restricted access

The conditions of thermal decomposition of Y, La, Ce(III), Pr, Nd, Sm, and Gd aconitates have been studied. On heating, the aconitate of Ce(III) loses crystallization water to yield anhydrous salt, which then is transformed in to oxide CeO2. The aconitates of Y, Pr, Nd, Sm, Eu and Gd decompose in three stages. First, aconitates undergo dehydration to form the anhydrous salts, which next decompose to Ln2O2CO3. In the last one the thermal decomposition of Ln2O2CO3 to Ln2O3 is accompanied by endothermic effect. Dehydration of aconitate of La undergoes in two stages. The anhydrous complex decomposes to La2O2CO3; this subsequently decomposes to La2O3.

Restricted access

The conditions of thermal decomposition of Tb(III), Dy, Ho, Er, Tm, Yb and Lu aconitates have been studied. On heating, the aconitates of heavy lanthanides lose crystallization water to yield anhydrous salts, which are then transformed into oxides. The aconitate of Tb(III) decomposes in two stages. First, the complex undergoes dehydration to form the anhydrous salt, which next decomposes directly to Tb4O7. The aconitates of Dy, Ho, Er, Tm, Yb and Lu decompose in three stages. On heating, the hydrated complexes lose crystallization water, yielding the anhydrous complexes; these subsequently decompose to Ln2O3 with intermediate formation of Ln2O2CO3.

Restricted access

Abstract  

Conditions for the formation of rare earth element (Y, La–Lu) 3-methylglutarates were studied and their quantitative composition and solubilities in water at 293 K were determined (10–2 mol dm–3). The IR spectra of the prepared complexes with general formula Ln2(C6H8O4)3 nH2O (n=3–8) were recorded and their thermal decomposition in the air were investigated. During heating the hydrated 3-methylglutarates are dehydrated in one step and next anhydrous complexes decompose to oxides Ln2O3 with intermediate formation Ln2O2CO3 (Y, La, Nd–Gd) or directly to the oxides, Ln2O3, CeO2, Pr6O11 and Tb4O7 (Ce, Pr, Tb–Lu).

Restricted access

The conditions of thermal decomposition of copper(II) benzenetricarboxylates in air atmosphere at heating rates of 10 and 5 deg·min−1 were studied. At 10 deg · min−1, the hemimellitate and trimesinate of copper(II) lose crystallization water and then decompose directly to CuO, whereas at 5 deg·min−1 they decompose to CuO through Cu2O. The trimellitate of copper(II) heated at various rates decomposes in the same way: it loses 1 water molecule and then decomposes directly to CuO.

Restricted access

Abstract  

Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)3,3-dimethylglutarates were investigated and their quantitative composition, solubility in water at 293 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with general formula MC7H10O4nH2O (n=0−2) were recorded and their thermal decomposition in air were studied. During heating the hydrated complexes of Mn(II),Co(II), Ni(II) and Cu(II) are dehydrated in one step and next all the anhydrous complexes decompose to oxides directly (Mn, Co, Zn) or with intermediate formation free metal (Ni,Cu) or oxocarbonates (Cd). The carboxylate groups in the complexes studied are bidentate. The magnetic moments for the paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II)attain values 5.62, 5.25, 2.91 and 1.41 M.B., respectively.

Restricted access