Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: W. Miao x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Power-time curves and metabolic properties of Tetrahymena thermophila BF5 exposed to different Yb3+ levels were studied by ampoule method of isothermal calorimetry at 28°C. Metabolic rate (r) decreased significantly while peak time (PT) increased with the increase of Yb3+. These results were mainly due to the inhibition of cell growth, which corresponded to the decrease of cell number obtained by cell counting. Compared with cell counting, calorimetry was sensible, easy to use and convenient for monitoring the toxic effects of Yb3+ on cells and freshwater ecosystem. It was also found that cell membrane fluidity decreased significantly under the effects of Yb3+, which indicated that Yb3+ could be membrane active molecules with its effect on cell membranes as fundamental aspect of its toxicity.

Restricted access

Abstract  

The power-time curves of Tetrahymena thermophila exposed to tributyltin (TBT) were detected by microcalorimetry. Metabolic rate (r) decreased significantly while peak time (PT) increased with the enhancement of TBT level. Compared with the measured multibiomarker including catalase, lactate dehydrogenase, glutathione S-transferase, ATPase and membrane fluidity, PT and r could be sensitive biomarkers for assessing TBT toxicity at cellular level. The effective concentrations obtained by them were consistent to those obtained by the protozoan community toxicity test. As a result, the microcalorimetric assay of T. thermophila had a great potential in assessing TBT acute toxicity and monitoring TBT pollution in the freshwater ecosystem.

Restricted access

Abstract  

Using isothermal microcalorimetry, the growth power-time curves of three strains of Tetrahymena were determined at 28C. Their Euclidean distances and cluster analysis diagram were obtained by using two thermokinetic parameters (r and Q log), which showed that T. thermophila BF1 and T. thermophila BF5 had a closer relationship. Compared with the single molecular biomarker (ITS1) method, microcalorimetry wasmaybe a simpler, more sensitive andmore economic technique in the phylogenetic studies of Tetrahymena species.

Restricted access