Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: W. Y. Feng x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Power-time curves and metabolic properties of Tetrahymena thermophila BF5 exposed to different Yb3+ levels were studied by ampoule method of isothermal calorimetry at 28°C. Metabolic rate (r) decreased significantly while peak time (PT) increased with the increase of Yb3+. These results were mainly due to the inhibition of cell growth, which corresponded to the decrease of cell number obtained by cell counting. Compared with cell counting, calorimetry was sensible, easy to use and convenient for monitoring the toxic effects of Yb3+ on cells and freshwater ecosystem. It was also found that cell membrane fluidity decreased significantly under the effects of Yb3+, which indicated that Yb3+ could be membrane active molecules with its effect on cell membranes as fundamental aspect of its toxicity.

Restricted access

Abstract  

The power-time curves of Tetrahymena thermophila exposed to tributyltin (TBT) were detected by microcalorimetry. Metabolic rate (r) decreased significantly while peak time (PT) increased with the enhancement of TBT level. Compared with the measured multibiomarker including catalase, lactate dehydrogenase, glutathione S-transferase, ATPase and membrane fluidity, PT and r could be sensitive biomarkers for assessing TBT toxicity at cellular level. The effective concentrations obtained by them were consistent to those obtained by the protozoan community toxicity test. As a result, the microcalorimetric assay of T. thermophila had a great potential in assessing TBT acute toxicity and monitoring TBT pollution in the freshwater ecosystem.

Restricted access

Summary  

PM10 and PM2.5 samples were collected simultaneously in Beijing, China, and analyzed by INAA and ICP-MS. Seasonal variations of the concentrations of ambient particles and their elemental compositions were found. The main sources of PM10 and PM2.5 in spring were the crust, coal burning and vehicle exhaust, in which the former was significant. During a strong dust storm, the concentrations of the crustal elements in PM10 and PM2.5 increased remarkably, but the concentrations of some anthropogenic elements decreased. The enrichment factors of these anthropogenic elements also decreased sharply during the dust storm, which indicated that they were mostly originated from local anthropogenic pollution and diluted by the huge amount of dust.

Restricted access

Patrinia scabra Bunge has long been used in clinic as a traditional Chinese medicine for treating leukemia and cancer and regulating host immune response. Despite their wide use in China, no report on system analysis on their chemical constituents is available so far. The current study was designed to profile the fingerprint of ethyl acetate extract of it, and in addition, to characterize the major fingerprint peaks and determine their quantity. Therefore, a detailed gradient high-performance liquid chromatography was described to separate more than 30 compounds with satisfactory resolution in P. scabra Bunge. Based on the chromatograms of 10 batches samples, a typical high-performance liquid chromatographic (HPLC) fingerprint was established with 23 chromatographic peaks being assigned as common fingerprint peaks. Furthermore, a quadrupole time of flight mass spectrometry (Q-TOF/MS) was coupled for the characterization of major compound. As (+)-nortrachelogenin was the most predominant compound in P. scabra Bunge, the quantification on it was also carried out with the method being validated. As a result, (+)-nortrachelogenin was found to be from 1.33 to 2.21 mg g−1 in this plant material. This rapid and effective analytical method could be employed for quality assessment of P. scabra Bunge, as well as pharmaceutical products containing this herbal material.

Open access

Abstract  

Using isothermal microcalorimetry, the growth power-time curves of three strains of Tetrahymena were determined at 28C. Their Euclidean distances and cluster analysis diagram were obtained by using two thermokinetic parameters (r and Q log), which showed that T. thermophila BF1 and T. thermophila BF5 had a closer relationship. Compared with the single molecular biomarker (ITS1) method, microcalorimetry wasmaybe a simpler, more sensitive andmore economic technique in the phylogenetic studies of Tetrahymena species.

Restricted access

Summary  

Iodine deficiency disorders (IDD) are one of most common nutritional deficiencies in the world. The nuclear analytical methods (ENAA, SRXRF and XRF) were employed to study the effect of iodine deficiency on the metal ion changes during the stage of brain development, combined with biochemical methods. The results show that the distributions of iron, copper and zinc varied to different extent in different brain regions and subcellular fractions of the ID rat brains. These distributional changes of trace elements might be associated with the brain damage caused by the iodine deficiency.

Restricted access

Abstract  

The damage in the pup rat brain with low-level mercury exposure, and the concentration variation of trace elements in the rat hippocampus was determined by synchrotron radiation X-ray fluorescence technique (SRXRF). Meanwhile, the levels and activities of glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) in the hippocampus were also measured. The results showed that the low dose of inorganic mercury prenatal and postnatal exposure could lead to the significant increase of both copper and zinc contents and remarkable decrease of iron content in pup rat brain. Compared to the control group, the activities of antioxidant enzymes such as GSH-Px, SOD, the contents of GSH and MDA in the pup rat hippocampus of mercury-exposed group fell down obviously.

Restricted access

Summary

Oroxylin A (5,7-dihydroxy-6-methoxyflavone), which has showed multiple pharmacological effects, was semi-synthesized chemically as a pharmaceutical agent. Its impurities, degradation products and their formation pathways remain unknown. In the present study, two impurities (5,6,7-trihydroxyflavone, 5-hydroxy-6,7-dimethoxytlavone) and a degradation product (5,7-dihydroxy-8-methoxyflavone) in Oroxylin A bulk drug substance were identified, and their formation pathways were proposed. A reversed phase liquid chromatographic method for the simultaneous determination of Oroxylin A and the three compounds was developed on a C18 column using methanol-acetonitrile-0.1% acetic acid (54:23:23, v/v/v) as the mobile phase. The detection was performed at 271 nm. The method was validated to be robust, precise, specific and linear between 4 and 40 μg mL−1; the limits of detection and quantification of Oroxylin A were 0.01 and 0.04 μg mL−1, respectively. The developed method was found to be suitable to check the quality of bulk samples of Oroxylin A at the time of batch release and also during its stability studies (long term and accelerated stability).

Full access

Abstract  

The occupational health impact of atmospheric pollution on exposed workers at one iron and steel complex was studied by instrumental neutron activation analysis of workers' hair samples and medical examination. The experimental results indicate that there is a positive correlation between the high inhalation amounts of iron and other trace elements by the exposed workers and the symptom of their high blood pressure and hypoglycemia, which implies that the atmospheric environment polluted by iron and steel industry has an adverse health impact on the exposed workers. The measures to relieve and abate the occupational diseases caused by air-borne particulate matter should be taken

Restricted access

Summary

10-O-(N,N-dimethylaminoethyl)-ginkgolide B (XQ-1) is an intermediate for synthesizing 10-O-(N,N-dimethylaminoethyl)-ginkgolide B methanesulfonate (XQ-1H), which is a novel ginkgolide B derivative and is being developed as a platelet-activating factor antagonist. A specific and rapid liquid chromatographic method was developed for the quantitative analysis of XQ-1 and its three related impurities, which were 10-O-(N,N-dimethylaminoethyl)-11,12-seco-ginkgolide B (imp-1), 10-O-(N,N-dimethylaminoethyl)-11,12-seco-3,14-dehydroginkgolide B (imp-2) and 10-O-(N,N-dimethylaminoethyl)-3,14-dehydroginkgolide B (imp-3) simultaneously in XQ-1 samples. Chromatographic separation was achieved on a CN band stationary phase, with the mobile phase consisting of methanol and 20 mM dipotassium hydrogen phosphate (pH 7.5) (50:50, υ/υ) in isocratic elution. The flow rate was 1.0 mL min−1 and detector was set at 220 nm. The method was optimized by the analysis of the samples generated during the forced degradation studies. The XQ-1, imp-1, imp-2, and imp-3 were completely separated within 15 min. The resolutions (R s) amongst four target compounds were >2. The developed method was validated with respect to specificity, linearity, accuracy, precision, and robustness. The results indicated that the simultaneous LC determination method was readily utilized as a quality control method for XQ-1 sample.

Full access