Search Results

You are looking at 1 - 10 of 41 items for

  • Author or Editor: X. F. Wang x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

A method of efficiency calibration for the measurement of 88Kr and 138Xe by HPGe γ-spectrometer is proposed in the present paper. The question for the efficient calibration is, how to achieve homogeneous sources of 88Kr-88Rb and 138Xe-138Cs. The fission product gases were obtained by irradiating a precisely measured amount of U3O8 (90% 235U) filled in a quartz glass ampoule. Source cell was first filled up with stearic acid, and then the fission product gases were charged into it. Xenon and krypton are not adsorbed on stearic acid, therefore, homogeneous sources of 88Kr-88Rb and 138Xe-138Cs can be prepared. The results of the experiment demonstrate that the method is feasible and successful.

Restricted access

To comprehensively understand the genetic basis of plant height (PH), quantitative trait locus (QTL) analysis for internode lengths, internode component indices and plant height component index (PHCI) were firstly conducted in the present study. Two related F8:9 recombinant inbred line (RIL) populations comprising 485 and 229 lines were used. Two hundred and nine putative additive QTL for the eight traits were identified, 35 of which showed significance in at least three trials. Of these, at least 11 pairwise QTL were common to the two populations. PH components at the QTL level had different effects on PH, confirming our previous multivariate conditional analysis (Cui et al. 2011). Eleven major QTL that showed consistency in expression across environments should be of great value in the genetic improvement of PH in wheat. The results above will enhance the understanding of the genetic basis of PH in wheat.

Restricted access

Summary  

Calorimetric determination of the total enthalpy changes (ΔH i) of guanidine-denatured lysozyme (Lys) during the adsorption with simultaneously refolding on the surface of hydrophobic interaction chromatography packings was carried out at 250.001C. The measured ΔH iin the circumstances should include the changes in the three fractions: adsorption, dehydration and molecular conformation. It was found that when the unfolded Lys molecules are adsorbed and refold on the surface, entropy-driving caused by the dehydration of Lys mainly dominates the foregoing process. The refolding enthalpies of Lys, ΔΔH iwere found to be 10~100 folds higher than that measured in usual solutions.</o:p>

Restricted access

Abstract  

The batch method and the column method were simultaneously employed to study the sorption and desorption of Eu(III) on red earth as a function of pH (4.6–6), the presence of a well-characterized fulvic acid (FA) and the iron oxides content of red earth. The results from both methods were consistent qualitatively. The Eu(III) sorption showed significant dependences on pH and FA, the sorption was increased with increasing pH and by addition of FA to the solutions, while the iron oxides content of the red earth had a negative contribution to the sorption of Eu(III). Additionally, the sorption-desorption hysteresis of Eu(III) on red earth occurred at a pH range of 4.6–6. Therefore, the humic substance and high pH have a great tendency to immobilize Eu(III) on red earth.

Restricted access

Grain yield (GY) and yield components (YC) were investigated using two F8: 9 RILs, comprising 229 and 485 lines, respectively. A conditional analysis was conducted to generate conditional values for GY independent of each YC. Then both unconditional and conditional values were analyzed to map QTLs with additive effect. In both RILs, up to 23 unconditional and conditional QTLs were detected. However, only two QTLs were identified repeatedly among environments. All QTLs, except for 4 detected in unconditional mapping, were also identified as conditional QTLs, whereas a number of QTLs were additionally detected in conditional mapping. The number of QTLs detected that affected GY was different with respect to component-special influences. Our results revealed that the contributions of YC influencing QTL expression related to GY differed.

Restricted access
Cereal Research Communications
Authors: X. Gong, C. Liu, Y. Wang, X. Zhao, M. Zhou, M. Hong, S. Wang, N. Li, and F. Hong

The mechanism of the fact that Mn deficiency damages the photosynthesis of plants is not yet fully understood. The main aim of the study was to determine Mn deficiency effects in photophosphorylation and key enzymes of CO 2 assimilation of maize. Maize plants were cultivated in Hoagland’s solution. They were subjected to Mn deficiency and to Mn administered in the Mn-deficient Hoagland’s media. The results showed that Mn deficiency was found to cause extensive declines in plant weight and chlorophyll a content, electron transport and oxygen-evolving rate, photophosphorylation rate, activities of Mg 2+ -ATPase, Ca 2+ -ATPase, Rubisco and Rubisco activase, and mRNA expressions of Rubisco and Rubisco activase of maize, but it only slightly affected chlorophyll b and carotenoid formation. However, Mn addition decreased the inhibition of the photosynthesis in maize caused by Mn deficiency.

Restricted access

High molecular weight (HMW) glutenin subunits are important seed storage proteins in wheat and its related species. Novel HMWglutenin subunits in Aegilops tauschii accession of TA2484 were detected and characterized. SDS-PAGE analysis revealed the y-type subunit from TA2484 displayed similar electrophoretic mobility compared to that of 1Dy12 subunit. However, the electrophoretic mobility of x-type subunit was faster than that of 1Dx2 subunit. The primary structure of the two cloned subunits from TA2484 was similar to that of the x- and y-type subunits reported before. However, the 148 residues of the x-type subunit, which contained the sequence element GHCPTSLQQ, in the middle of the repetitive domain was quite different from other x-type subunits. Moreover, the 68 residues in this region were identical to those of the y-type subunits from the same accession. Consequently, 1Dx2.3*t (x-type subunit of TA2484) contains an extra cystenin residue located at the repetitive domain, which is novel compared to the x-type subunits reported so far. Phylogenetic analysis indicated that two subunits from accession TA2484 were in the x- and y-type subunit cluster, but bootstrapping value of 100% gave high support for the spilt between two subunits (1Dx2.3*t and 1Dy12.3*t) and their alleles, respectively. A hypothesis on the genetic mechanism generating this novel sequence of 1Dx2.3*t subunit is suggested.

Restricted access

Thinopyrum intermedium, which has many useful traits, is valuable for wheat breeding. A new wheat-Thinopyrum addition line, SN100109, was developed from the progeny of common wheat cultivar Yannong 15 and Th. intermedium. It was resistant to most races of Blumeria graminis f. sp tritici (Bgt), which caused powdery mildew in wheat, and its reactions were different from the reactions of gene Pm40 and Pm43. Genomic in situ hybridization (GISH) and molecular marker analysis were used to identify the genomic composition of SN100109. GISH results showed that SN100109 was a wheat-Th. intermedium disomic addition line containing one pair of J chromosomes, and the resistance gene was located on the alien additional chromosomes of SN100109. And four molecular markers BE425942, BF482714, Xgdm93 and BV679214 which were assigned to homologous group 2, were specific molecular markers of the additional chromosomes. All the results indicated that SN100109 contained one pair of 2J chromosomes. SN100109 can be used as a novel germplasm source for introducing powdery mildew resistance genes to wheat in breeding programs.

Restricted access

Casein peptides with calcium-chelating capacity were rapidly enriched by using a novel ceramic matrix (CM)-based Ti4+-IMAC adsorbent. The ability of calcium-chelating peptides (CCPs) to bind calcium and the physical properties of complexes formed between CCPs and calcium were investigated. Results demonstrated that the amount of calcium bound depended on the degree of hydrolysis (DH) of casein hydrolysates. The highest calcium binding capacity (683 mg g−1) occurred when bovine casein was hydrolysed by pancreatin at a DH of 0.14%, meanwhile, the calcium content of CCPs-Ca complex exhibited the maximum level (134.96 mg g−1). In addition, CCPs showed a higher radical scavenging capacity (50 µg ml−1; 99% inhibition, or an equivalent activity of 9.91×10−3 M Trolox) compared to casein digest. Moreover, Fourier-transform infrared spectroscopy and fluorescence spectroscopy were used to explore the interaction between CPPs and calcium, and the results demonstrated that phosphoserine residues as well as COO- groups of CCPs were involved in the formation of CCPs-Ca complex.

Restricted access

Abstract  

Ca-47 radioactive tracer was used to determine the phamocodynamics, distribution pattern, absorption and bioavailability of a new type calcium supplement in rabbit prepared by plasma technology. Our results indicate that calcium from the new nutrient is mainly deposited in bone 6 or 7 days after oral administration. The absorption rate of this new calcium preparation is estimated to be 30–40 %.

Restricted access