Search Results
You are looking at 1 - 8 of 8 items for
- Author or Editor: X. Geng x
- Refine by Access: All Content x
Abstract
Calorimetric measurement of adsorption enthalpies of native lysozyme(Lyz) on a moderately hydrophobic surface at 25°C, pH 7.0 and various salt concentrations was performed. Based on the thermodynamics of stoichiometric displacement theory (SDT), we calculated the fractions of thermodynamic functions involving four subprocesses during a displacement adsorption process from the directly determined enthalpies in combination with adsorption isotherm measurements. The thermodynamic fractions reveal the relative degree of the four subprocesses for contributions to enthalpy, entropy and free energy. The results show that native Lyz adsorption on a moderately hydrophobic surface is an entropy driven process contributed mainly by conformational loss of adsorbed Lyz.
Abstract
The displacement adsorption enthalpies (ΔH) of the refolding of lysozyme (Lys) denatured by 1.8 mol L–1 guanidine hydrochloride (GuHCl) on a moderately hydrophobic surface at 298 K, pH 7.0 and various (NH4)2SO4 concentrations were determined by using a Micro DSC-III calorimeter. The study shows that the effect of salt concentrations on the three fractions of the enthalpy is that with increasing (NH4)2SO4 concentrations, the molecular conformation enthalpy of the adsorbed Lys has probably no distinct change at 1.8 mol L–1 GuHCl; the adsorption affinity enthalpy (exothermic) becomes more negative; and the dehydration enthalpy (endothermic) decreases. At lower salt concentrations, the dehydration, especially squeezing water molecules led by molecular conformation, which leads to an entropy-driving process, predominates over the adsorption affinity (also including the orderly orientation of molecular conformation), while at higher salt concentrations, the latter is prior to the former for contribution to ΔH and induces an enthalpy-driving process. Also, the optimal NH4)2SO4 concentration favoring refolding and renaturing of Lys denatured by 1.8 mol L–1 GuHCl was found.
Abstract
Both microcalorimetric determination of displacement adsorption enthalpies ΔH and measurement of adsorbed amounts of guanidine – denatured lysozyme (Lys) refolding on the surface of hydrophobic interaction chromatography (HIC) packings at 308 K were carried out and compared with that at 298 K. Study shows that both temperature and concentration of guanidine hydrochloride (GuHCl) affect the molecular mechanism of hydrophobic interaction of protein with adsorbent based on the analysis of dividing ΔH values into three kinds of enthalpy fractions. The adsorption in higher concentrations of GuHCl (>1.3 mol L–1) at 308 K is an enthalpy-driving process, and the adsorption under other GuHCl concentrations is an entropy-driving process. The fact that the Lys denatured by 1.8 mol L–1 GuHCl forms a relatively stable intermediate state under the studied conditions will not be changed by temperature.
Summary
Calorimetric determination of the total enthalpy changes (ΔH i) of guanidine-denatured lysozyme (Lys) during the adsorption with simultaneously refolding on the surface of hydrophobic interaction chromatography packings was carried out at 250.001C. The measured ΔH iin the circumstances should include the changes in the three fractions: adsorption, dehydration and molecular conformation. It was found that when the unfolded Lys molecules are adsorbed and refold on the surface, entropy-driving caused by the dehydration of Lys mainly dominates the foregoing process. The refolding enthalpies of Lys, ΔΔH iwere found to be 10~100 folds higher than that measured in usual solutions.</o:p>
Abstract
The displacement adsorption enthalpies (ΔH) of denatured α-Amylase (by 1.8 mol L−1 GuHCl) adsorbed onto a moderately hydrophobic surface (PEG-600, the end-group of polyethylene glycol) from solutions (x mol L−1 (NH4)2SO4, 0.05 mol L−1 KH2PO4, pH 7.0) at 298 K are determined by microcalorimeter. Further, entropies (ΔS), Gibbs free energies (ΔG) and the fractions of ΔH, ΔS, and ΔG for net adsorption of protein and net desorption of water are calculated in combination with adsorption isotherms of α-Amylase based on the stoichiometric displacement theory for adsorption (SDT-A) and its thermodynamics. It is found that the displacement adsorptions of denatured α-Amylase onto PEG-600 surface are exothermic and enthalpy driven processes, and the processes of protein adsorption are accompanied with the hydration by which hydrogen bond form between the adsorbed protein molecules favor formation of β-sheet and β-turn structures. The Fourier transformation infrared spectroscopy (FTIR) analysis shows that the contents of ordered secondary structures of adsorbed α-Amylase increase with surface coverages and salt concentrations increment.
Abstract
Both calorimetric determination of displacement adsorption enthalpies ΔH and measurement of adsorbed amounts of lysozyme (Lyz) denatured by 1.8 mol L−1 guanidine hydrochloride (GuHCl) on a moderately hydrophobic packings at 298 K, pH 7.0 and various salt concentrations were carried out. Based on the thermodynamics of stoichiometric displacement theory (SDT) the fractions of thermodynamic functions, which related to four subprocesses of denatured protein refolding on the surface, were calculated and thermodynamic analysis that which one of the subprocesses plays major role for contribution to the thermodynamic fractions was made in detail. The moderately hydrophobic surface can provide denatured Lyz energy and make it gain more conformation with surface coverage or salt concentration increment. The displacement adsorptions of denatured Lyz onto PEG-600 surface are exothermic, more structure-ordered and enthalpy driven processes.
Abstract
We studied the removal process of excessive free carbon in the nano-SiC powder by TG-DTA-MS, XRD and TEM three methods. The studies showed that the temperature of removing excessive free carbon in the nano-SiC powder should be about 750°C in air.
Summary
A preparative high-speed countercurrent chromatograph (HSCCC) method for the isolation and purification of C6-C2 natural alcohol and benzyl ethanol from Forsythia suspensa was successfully established. Cornoside, forsythenside F, forsythiaside, and acteoside were rapidly obtained for the first time by HSCCC with a two-phase solvent system ethyl acetate-n-butanol-methanol-water (5:1:0.5:5, υ/υ) in one-step separation. The purities of them were all above 97% as determined by high-performance liquid chromatography, and the combination of ESI-MS and NMR analysis confirmed the chemical structures of the four compounds.