Search Results
You are looking at 1 - 10 of 17 items for
- Author or Editor: X. Han x
- Refine by Access: All Content x
Abstract
In this paper, pyrolysis characteristics of oil shale obtained from Huadian, China, are investigated by thermogravimetry method. The effect of operating conditions, such as particle size, heating rate on the pyrolysis process is analyzed, and kinetic parameters of pyrolysis at different heating rates are calculated using a two-stage Arrhenius model that is solved by the Freeman-Carroll method. On the basis of these experimental results and theoretical analysis, a mathematical model, fully suitable for the pyrolysis characteristics of oil shale, is developed: mass loss rate is described by a two-stage intrinsic kinetics equation for reducing the calculation error; pyrolytic heat value of volatile is contained in energy equation, and density equation is considered as well, due to the release of a large amount of volatiles in pyrolysis process. Thermogravimetric experimental data are used to validate the described models.
Abstract
Combustion and pyrolysis experiments of Huadian oil shale have been conducted using a STA409 thermogravimetric analyzer. The effect of various factors on combustion of oil shale is studied. Particle size has little effect on combustion process of oil shale; starting temperature of combustion mass loss and ignition temperature of oil shale decrease with increasing O2 concentration of ambient gas; increase of heating rate can result in ignition temperature, burn-out temperature and maximum rate of combustion mass loss increasing. Homogeneous ignition mechanism of oil shale is ascertained using a hot state microscope. Activation energy was determined using Arrhenius model that is solved by Freeman–Carroll method. Calculation results show activation energy will increase with heating rate.
Abstract
Oil shale semicoke, formed in retort furnaces, is a source of severe environmental pollution and is classified as a dangerous solid waste. For the industrial application of oil shale semicoke in combustion, this present work focused on the thermal analysis of its combustion characteristics. The pyrolysis and combustion experiments of semicoke were conducted in a Pyris thermogravimetric analyzer. From the comparison of pyrolysis curves with combustion curves, the ignition mechanism of semicoke samples prepared at different carbonization temperatures was deduced, and was found to be homogeneous for semicoke samples obtained at lower carbonization temperature, shifting to heterogeneous with an increase in the carbonization temperature. The effect of carbonization temperatures and heating rates on the combustion process was studied as well. At last, combustion kinetic parameters of semicoke were calculated with the binary linear regression method, showing that activation energy will increase with increasing the heating rate.
Abstract
Co-combustion experiments of mixture of Huadian oil shale and Heshan coal with high sulphur content have been conducted using a thermogravimetric analyzer. The effects of five different Ca/S mol ratios on the combustion characteristics of mixture fuel are analyzed using TG and DTG curves. The results show that the initial temperature of combustion of mixture fuel is decreased with an increase in the oil shale content of mixture fuel. The combustion characteristic of mixture fuel is superior to that of Heshan coal. Adding about 20 mass% Huadian oil shale into Heshan coal is feasible for desulfurization of mixture fuel during combustion.
Abstract
Effects of nano-metal powders (aluminum and nickel) addition on the thermooxidative degradation of binder PEG in air atmosphere from 20 to 350°C were studied by TG/DTA and in-situ FTIR. TG/DTA results showed that the addition of nano-Al slowed down the degradation process of PEG in the early period but accelerated the process in the late period; the addition of nano-Ni made the PEG degradation process begin as soon as melted. The in-situ FTIR results showed that nano-Ni promoted the thermooxidative degradation of PEG in air, and made the degradation process of PEG complete much earlier.
Abstract
The inhibitory effects of three berberine alkaloids (BAs) from Coptis chinensis Franch on Bifidobacterium adolescentis growth were investigated by microcalorimetry. The growth rate constant (k) and maximum heat-output power (Pmax) decreased and peak time of maximum heat-output power (tp) prolonged with the increase of BAs concentration. Half inhibitory ratios (IC50) BAs were respectively 790.3 (berberine), 339.6 (coptisine) and 229.8 μL−1 (palmatine), which indicated the sequence of their antimicrobial activity: berberine<coptisine<palmatine. Combined with previous findings, the sequence which could show the bioactivity of Bacillus shigae and Escherichia coli was: berberine>coptisine>palmatine. The structure-function relationship of BAs indicated that the functional group methylenedioxy or methoxyl at C2 and C3 might be the major group inducing the activities of BAs on E. coli and B. adolescentis. Meanwhile, the substituent groups at C2, C3, C9 and C10 almost had equal effect on B. shigae.
Effects of retorting factors on combustion properties of shale char
Part 4. Combustion characteristics
Abstract
For obtaining high shale oil yield as well as treating shale char efficiently and in an environmentally friendly way in a new comprehensive utilization system of oil shale, a series of fundamental experiments have been conducted for exploring the effects of retorting factors on shale oil yield and shale char characteristics. Based on these previous studies, in this article, combustion experiments of shale chars obtained under various retorting conditions were performed with a Q5000IR thermogravimetric analyzer and a Leitz II-A heatable stage microscope and the effects of retorting factors were discussed on the combustion characteristics of shale char. Among four studied retorting parameters, retorting temperature and residence time exert very significant influence on the combustion characteristics of shale char. Either elevating the retorting temperature from 430 to 520 °C or lengthening the residence time at a low retorting temperature will largely decrease residual organic matters within shale char, resulting in decreasing mass loss in the low-temperature stage of combustion process of shale char, an elevation of ignition temperature and a shift of ignition mechanism from homogeneous to heterogeneous. One set of retorting condition was also recommended as a reference for designing the comprehensive utilization system of oil shale studied in this work: retort temperature of 460–490 °C, residence time of 20–40 min, particle size of <3 mm, and low heating rate of <10 °C/min.
Hydrated goethite nanorodS
Vibration spectral properties, thermal stability, and their potential application in removing cadmium ions
Abstract
Vibration spectral properties and dehydration behaviors of goethite nanorods with diameters ranging from 13 to 32 nm were investigated using infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. All goethite nanorods were highly hydrated with physisorbed and chemisorbed water. As the diameters of goethite nanorods increased, the hydroxyl deformation vibration in the a-b plane showed a significant blue shift, while the Fe-O vibration in the a-b plane shifted to lower frequencies, indicating an enhancement of O-H bond and the ionicity of Fe-O in a-b plane. The hydrated goethite nanorods are also proved to be useful in environmental remedy because of their excellent removal ability of heavy metal ions.
Seed germination is a new beginning for the crop life cycle, which is closely related to seed sprouting and subsequent plant growth and development, and ultimately affects grain yield and quality. Salt stress is one of the most important abiotic stress factors that restrict crop production. Therefore, it is highly important to improve crop salt tolerance and sufficient utilization of saline-alkali land. In this study, we identified the phosphorylated proteins involved in salt stress response by combining SEM, 2-DE, Pro-Q Diamond staining and tandem mass spectrometry. The results showed that salt stress significantly inhibited seed germination and starch degradation. In total, 14 phosphorylated protein spots (11 unique proteins) in the embryo and 6 phosphorylated protein spots (4 unique proteins) in the endosperm were identified, which mainly involved in stress/defense, protein metabolism and energy metabolism. The phosphorylation of some proteins such as cold regulated proteins, 27K protein, EF-1β and superoxide dismutase could play important roles in salt stress tolerance.
Abstract
The migration of 237Np in an undisturbed Chinese loess column was investigated by direct γ-ray method. The column was taken from a field test site and installed in a laboratory simulation hall. Radionuclide 237Np in the form of neptunium nitrate, mixed with quartz, was introduced into the column and covered with loess. Artificial rainfall was applied to the column for about 3 years and, the counting rates of 237Np in the column from 56 to 616 days at different vertical positions were detected with a γ-ray detection system. Based on the counting rates of 237Np in the simulation column at different vertical positions and the distance from the source layer, the relationship of the mass center of 237Np in the column at different experimental periods to the experimental time was established, C m = 0.36 log(t)-2.75. Here C m is the mass center of 237Np in the column, cm, and t is the experimental time in days. Based on this relationship, the mass center of 237Np for the 1,073-day experiment was predicted and compared to that obtained with the final destructive method. The good agreement between the prediction and the experimental values indicates that the direct γ-ray method could be used to predict the migration of strongly adsorbed radionuclides such as 237Np in environmental media with the help of laboratory simulation columns.