Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: X. Ye x
Clear All Modify Search

Abstract  

This paper reports on the qualitative and quantitative analyses of light hydrocarbons produced by radiation degradation of N,N-diethylhydroxylamine. The results show that when the absorbed doses are between 10 and 1000 kGy, the main light hydrocarbons are methane, ethane, ethene, propane and n-butane. Their volume fractions are increased with the increase of the dose. The volume fraction of ethene is also increased at low doses with the increase of the dose, but it is decreased with the increase of dose at high doses.

Restricted access

The common wheat line, YW243, developed in our research group, was tested for the resistances of barley yellow dwarf virus (BYDV), powdery mildew (Pm) and stripe rust in field, and was analyzed by molecular markers for convenient trace of the resistant genes in breeding. Genomic in situ hybridization (GISH) analysis and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) assay further demonstrated that YW243 was a homozygous multiple translocation line of Triticum aestivum, Thinopyrum intermedium and Secale cereale (T7DS·7DL-7XL & 1BL·1RS). The disease resistance test and marker analysis showed that YW243 carried seven resistance genes to the three diseases, including Bdv2 to BYDV on 7DL-7XL, Pm4 to powdery mildew on 2AL, Yr2, Yr9, Sr 31 and Lr26 and a new Yr to stripe rust on 7B, 1BL, 1RS and 2BL. Restriction fragment length polymorphism (RFLP) markers Xpsr687 and Xwg380 , sequence tagged site (STS) marker STS 1700 , simple sequence repeat (SSR) markers Xgwmc364 and Xgwm582 , SSR markers Xgwm388 and Xgwm501 can be used as diagnostic tools to track Bdv2, Pm4, Yr2, Yr9 and Yr in YW243 , respectively; and two amplified fragment length polymorphism (AFLP) markers M54E63 - 700 and M54E64 - 699 can also be used to select Yr in YW243 .

Restricted access

Summary

A simple and rapid HPLC method using a photodiode array (PDA) detector for the analysis of 3-hydroxycarboplatin and its related complex has been established for the first time. Separation of 3-hydroxycarboplatin and 3-hydroxy-1,1-cyclobutanedicarboxylic acid (3-HO-cbdca) was carried out on a Phenomenex ODS3 column using an aqueous solution containing 50 mM ammonium acetate and 5 mM sodium 1-octanesulfonate as the mobile phase. The flow rate was 0.8 mL min−1, the column temperature was 40°C, and the detection wavelength was 230 nm for 3-hydroxycarboplatin and 220 nm for 3-HO-cbdca. Different analytical performance parameters such as precision, accuracy, linearity, stability of the solution, specificity, limit of detection (LOD), limit of quantification (LOQ), and system suitability were determined using the Empower 2 software. The calibration curve of standard 3-hydroxycarboplatin showed good linearity (r = 0.9995) within the range 0.5–1.4 mg mL−1. The method was accurate and precise, with an average accuracy of 100.4% (RSD = 1.53%, n = 9), and the results of the system suitability test showed symmetrical peaks, good resolution (R s), and repeatability. It can be applied to the quality control of 3-hydroxycarboplatin.

Restricted access

Abstract  

A ternary binuclear complex of dysprosium chloride hexahydrate with m-nitrobenzoic acid and 1,10-phenanthroline, [Dy(m-NBA)3phen]2·4H2O (m-NBA: m-nitrobenzoate; phen: 1,10-phenanthroline) was synthesized. The dissolution enthalpies of [2phen·H2O(s)], [6m-HNBA(s)], [2DyCl3·6H2O(s)], and [Dy(m-NBA)3phen]2·4H2O(s) in the calorimetric solvent (VDMSO:VMeOH = 3:2) were determined by the solution–reaction isoperibol calorimeter at 298.15 K to be

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{s}} H_{\text{m}}^{\theta }$$ \end{document}
[2phen·H2O(s), 298.15 K] = 21.7367 ± 0.3150 kJ·mol−1,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{s}} H_{\text{m}}^{\theta }$$ \end{document}
[6m-HNBA(s), 298.15 K] = 15.3635 ± 0.2235 kJ·mol−1,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{s}} H_{\text{m}}^{\theta }$$ \end{document}
[2DyCl3·6H2O(s), 298.15 K] = −203.5331 ± 0.2200 kJ·mol−1, and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{s}} H_{\text{m}}^{\theta }$$ \end{document}
[[Dy(m-NBA)3phen]2·4H2O(s), 298.15 K] = 53.5965 ± 0.2367 kJ·mol−1, respectively. The enthalpy change of the reaction was determined to be
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{r}} H_{\text{m}}^{\theta } = 3 6 9. 4 9 \pm 0. 5 6 \;{\text{kJ}}\cdot {\text{mol}}^{ - 1} .$$ \end{document}
According to the above results and the relevant data in the literature, through Hess’ law, the standard molar enthalpy of formation of [Dy(m-NBA)3phen]2·4H2O(s) was estimated to be
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\theta }$$ \end{document}
[[Dy(m-NBA)3phen]2·4H2O(s), 298.15 K] = −5525 ± 6 kJ·mol−1.

Restricted access

Abstract  

This paper reports the study of hydrogen and carbon monoxide produced by radiation degradation of N, N-dimethylhydroxylamine (DMHA). The results show that when the concentration of DMHA is between 0.1M–0.5M and the dose is between 10–1000 kGy, the volume fraction of hydrogen is very high and increases with the dose. The volume fraction of hydrogen is little dependent on the concentration of DMHA at lower dose but increases with increasing concentration of DMHA at higher dose. The volume fraction of carbon monoxide is very low.

Restricted access

Abstract  

The recombination of hydrogen and oxygen in technical gaseous waste of nuclear power plants in enlarged scale experiment has been studied on the basis of our previous work.1 The catalyst and its best operating conditions for recombination of hydrogen and oxygen determined in a small scale experiment were demonstrated and tested. The results show that the data obtained in an enlarged scale experiment agreed well with that of in a small scale test. The recombination rate of H2 and O2 was higher than 98.3% and 99.98% respectively. After recombination, the residual concentrations of H2 and O2 in waste gas were O2<3 ppm, H2<400 ppm. The Pd-Al2O3 catalyst and operating conditions determined for gaseous waste processing of nuclear power plants were satisfactory.

Restricted access

Although significant progress has been made on Agrobacterium -mediated wheat transformation, the current methodologies use immature embryos as recipient tissues, a process which is labor intensive, time consuming and expensive. In this study, we have managed to develop an Agrobacterium -based transformation scheme using explants derived from mature embryos. Based on transient expression of β -glucuronidase (GUS) marker, mature embryo halves prepared from freshly imbibed seeds were generally most susceptible to Agrobacterium -mediated T-DNA transfer. According to the results of callus induction and shoot production, Yumai 66 and Lunxuan 208 showed higher selection and regeneration efficiency than Bobwhite. In line with this finding, fertile T 0 transgenic plants were most readily obtained for both spring and winter wheat when mature embryo halves were used for co-inoculation by Agrobacterium cells. The presence of the antibiotic selection marker ( nptII , encoding neomycin phosphotransferase II) in the T 0 plants was revealed by both genomic PCR amplification and the enzyme-linked immunosorbent assay (ELISA). Additional analysis showed that the transgene was stably inherited from the two different generations and segregated normally among the T 1 progenies. Further development along this line will raise the efficiency of wheat transformation and increase the use of this approach in the molecular breeding of wheat crop.

Restricted access
Authors: A. He, M. Ye, Z. Tang, S. Lu, H. Cao, Y. Gu, X. Fan, L. Zhao and J. Gao

Abstract  

The recombination of hydrogen and oxygen in technical gaseous waste of nuclear power plants has been studied. A highly efficient catalyst for reacting H2 with O2 to form water was prepared. Various operating conditions and factors affecting the recombination of H2 and O2 were tested and the best conditions were determined. Results show that the Pd–Al2O3 catalyst prepared had very good characteristics. The recombination rate of H2 and O2 was higher than 98.3% and 99.9%, respectively. After recombination, residual concentrations of H2 and O2 in waste gas were O2<3 ppm, H2<400 ppm. The Pd–Al2O3 catalyst and operating conditions determined for gaseous waste processing of nuclear power plants were satisfactory.

Restricted access
Authors: Robert Thiebaud, J.P. Loenneke, C.A. Fahs, D. Kim, X. Ye, T. Abe, K. Nosaka and M.G. Bemben

Discrepancies exist whether blood flow restriction (BFR) exacerbates exercise-induced muscle damage (EIMD). This study compared low-intensity eccentric contractions of the elbow flexors with and without BFR for changes in indirect markers of muscle damage. Nine untrained young men (18–26 y) performed low-intensity (30% 1RM) eccentric contractions (2-s) of the elbow flexors with one arm assigned to BFR and the other arm without BFR. EIMD markers of maximum voluntary isometric contraction (MVC) torque, range of motion (ROM), upper arm circumference, muscle thickness and muscle soreness were measured before, immediately after, 1, 2, 3, and 4 days after exercise. Electromyography (EMG) amplitude of the biceps brachii and brachioradialis were recorded during exercise. EMG amplitude was not significantly different between arms and did not significantly change from set 1 to set 4 for the biceps brachii but increased for the brachioradialis (p ≤ 0.05, 12.0% to 14.5%) when the conditions were combined. No significant differences in the changes in any variables were found between arms. MVC torque decreased 7% immediately post-exercise (p ≤ 0.05), but no significant changes in ROM, circumference, muscle thickness and muscle soreness were found. These results show that BFR does not affect EIMD by low-intensity eccentric contractions.

Restricted access

Hydrogen sulfide (H2S) has been recently found to be a gaseous signaling molecule in plants. In this work, we studied the role of H2S in alleviating salinity stress during wheat grain germination (Triticum aestivum L. Yangmai 158). Pretreatment with NaHS, a H2S donor, during wheat grain imbibition, could significantly attenuate the inhibitory effect of salinity stress on wheat germination. NaHS-pretreated grain showed higher amylase and esterase activities than water control. NaHS pretreatment differentially stimulated the activities of catalase (CAT), guaiacol peroxidase (POD) and ascorbate peroxidase (APX), decreased the level of malondialdehyde (MDA) and reduced NaCl-induced changes in plasma membrane integrity in the radicle tips of seedlings compared with water control. We conclude that H2S plays an important role in protecting wheat grain from oxidative damage induced by salinity stress.

Restricted access