Search Results

You are looking at 1 - 10 of 20 items for

  • Author or Editor: X.B. Liu x
  • All content x
Clear All Modify Search

Abstract  

Both calorimetric determination of displacement adsorption enthalpies ΔH and measurement of adsorbed amounts of lysozyme (Lyz) denatured by 1.8 mol L−1 guanidine hydrochloride (GuHCl) on a moderately hydrophobic packings at 298 K, pH 7.0 and various salt concentrations were carried out. Based on the thermodynamics of stoichiometric displacement theory (SDT) the fractions of thermodynamic functions, which related to four subprocesses of denatured protein refolding on the surface, were calculated and thermodynamic analysis that which one of the subprocesses plays major role for contribution to the thermodynamic fractions was made in detail. The moderately hydrophobic surface can provide denatured Lyz energy and make it gain more conformation with surface coverage or salt concentration increment. The displacement adsorptions of denatured Lyz onto PEG-600 surface are exothermic, more structure-ordered and enthalpy driven processes.

Restricted access

Abstract

By using the critical point theory, the existence of periodic solutions to second order nonlinear p-Laplacian difference equations is obtained. The main approach used is a variational technique and the saddle point theorem. The problem is to solve the existence of periodic solutions of second order nonlinear p-Laplacian difference equations.

Restricted access

Abstract

Phase behavior of dodecane–tetradecane (n-C12H26–C14H30, n-C12–C14) binary system in bulk and confined in SBA-15 (pore diameters 8 nm; 15.9 nm) has been investigated by differential scanning calorimetry and transmission electron microscopy. The bulk system possesses some special phases relating to the rotator phase in normal alkanes. Dodecane–tetradecane mixtures confined in SBA-15 (8 nm) are a system miscible both in solid and liquid states with a phase diagram of a smooth curve. Dodecane–tetradecane system confined in SBA-15 (15.9 nm) exhibits not only solid–liquid (s–l) in all compositions but solid–solid transition in mole fractions of tetradecane 0.1–0.6, which forms a phase diagram of “loop line” shape. Melting temperatures of n-C12–C14/SBA-15 (8 nm) are lower than those of n-C12–C14/SBA-15 (15.9 nm) in all mole fractions. The evolution of the phase diagram of n-C12–C14 confined in 8 nm, 15.9 nm pore sizes of SBA-15 and in bulk, respectively, shows a dramatic effect of confinement on phase behavior of normal alkane mixtures. The s–l phase boundary lines of n-C12–C14/SBA-15 (8, 15.9 nm) are fitted as being [], where D is a polynomial ∑ a i x i, i = 1, 2,···, n (A = C14, B = C12).

Restricted access

Abstract  

A solid complex of rare-earth compounds with alanine, [ErY(Ala)4(H2O)8](ClO4)6 (Ala=alanine), was synthesized, and a calorimetric study and thermal analysis for it was performed through adiabatic calorimetry and thermogravimetry. The low-temperature heat capacity of [ErY(Ala)4(H2O)8](ClO4)6 was measured with an automated adiabatic precision calorimeter over the temperature range from 78 to 377 K. A solid-solid phase transition was found between 99 and 121 K with a peak temperature at 115.78 k. The enthalpy and entropy of the phase transition was determined to be 1.957 Kj mol-1, 16.90 j mol-1 k-1, respectively. Thermal decomposition of the complex was investigated in the temperature range of 40~550C by use of the thermogravimetric and differential thermogravimetric (TG/DTG) analysis techniques. The TG/DTG curves showed that the decomposition started from 120 and ended at 430C, completed in three steps. A possible mechanism of the thermal decomposition was elucidated.

Restricted access

Grains of 12 accessions of Triticum timopheevii (Zhuk.) Zhuk. ssp. timopheevii (AAGG, 2n = 4x = 28) and one bread wheat cultivar Chinese Spring (CS) and one durum wheat cultivar Langdon (LDN) grown across two years were analyzed for grain iron (Fe) and zinc (Zn) concentrations. All the 12 tested T. timopheevii ssp. timopheevii genotypes showed significantly higher concentration of grain Fe and Zn than CS and LDN. Aboundant genetic variability of both the Fe and Zn concentrations was observed among the T. timopheevii ssp. timopheevii accessions, averagely varied from 47.06 to 90.26 mg kg−1 and from 30.05 to 65.91 mg kg−1, respectively. Their grain Fe and Zn concentrations between years exhibited a significantly positive correlation with the correlation coefficients r = 0.895 and r = 0.891, respectively, indicating the highly genetic stability. Flag leaf possessed twice or three times higher concentrations for both Fe and Zn than grain, and a significantly high positive correlation appeared between the two organs with r = 0.648 for Fe and r = 0.957 for Zn concentrations, respectively, suggesting flag leaves might be indirectly used for evaluating grain Zn and Fe contents. Significant correlations occurred between grain Fe and Zn concentrations, and between grain Zn concentration and the two agronomic traits of plant height and number of spikelets per spike. Both the concentrations were not related to seed size or weight as well as NAM-G1 gene, implying the higher grain Fe and Zn concentrations of T. timopheevii ssp. timopheevii species are not ascribed to concentration effects of seed and the genetic control of NAM-G1 gene. There might be some other biological factors impacting the grain’s Zn and Fe concentrations. These results indicated T. timopheevii ssp. timopheevii species might be a promising genetic resource with high Fe and Zn concentrations for the biofortification of current wheat cultivars.

Restricted access

Abstract  

Two compounds of antimony trichloride and bismuth trichloride with valine are synthesized by solid phase synthesis at room temperature. Their compositions, determined by element analysis, are Sb(C5H10O2N)3·2H2O and Bi(C5H10O2N)2Cl·0.5H2O. The crystal structure of antimony complex with valine belongs to triclinic system and its lattice parameters are: a=0.9599 nm, b=1.5068 nm, c=1.9851 nm, α=92.270, β=95.050, γ=104.270. The crystal structure of bismuth complex with valine belongs to monoclinic system and its lattice parameters are: a=1.6012 nm, b=1.8941 nm, c=1.839 nm, β=99.73°. The far-infrared spectra and infrared spectra show that the amino group and carboxyl of valine may be coordinated to antimony and bismuth, respectively, in two compounds. The TG-DSC results also reveal that the complexes were formed.

Restricted access

Abstract  

A new compound cyclohexyl-t-butyldimethylammonium tetraphenylborate, [C6H11N(CH3)2(C(CH3)3)]BPh4 has been prepared, and its decomposition mechanism was studied by TG. The IR spectra of the products of thermal decomposition were examined at every stage. Kinetic analysis for the first stage of thermal decomposition process was obtained by TG and DTG curves, and kinetic parameters were obtained from the analysis of the TG-DTG curves with integral and differential equations. The most probable kinetic function was suggested by comparison of kinetic parameters.

Restricted access

Saccharomyces cerevisiae MERIT.ferm was used as mono- and mixed-cultures with Williopsis saturnus var. mrakii NCYC500 in mango wine fermentation. A ratio of 1:1000 (Saccharomyces:Williopsis) was chosen for mixed-culture fermentation to enable longer persistence of the latter. The monoculture of S. cerevisiae and mixed-culture was able to ferment to dryness with 7.0% and 7.7% ethanol, respectively. The monoculture of W. mrakii produced 1.45% ethanol. The mango wines fermented by S. cerevisiae alone and the mixed-culture were more yeasty and winey, which reflected their higher amounts of fusel alcohols, ethyl esters and medium-chain fatty acids. The mango wine fermented by W. mrakii alone was much less alcoholic, but fruitier, sweeter, which corresponded to its higher levels of acetate esters.

Restricted access
Cereal Research Communications
Authors: L. Wei, S.G. Bai, X.J. Hou, J.M. Li, B. Zhang, W.J. Chen, D.C. Liu, B.L. Liu, and H.G. Zhang

Among 20 awnless Tibetan wheat cultivars analyzed by SDS-PAGE, the migration rate of an HMW-GS in XM001584 and XM001593, named 1BX23*. was shown to be slightly faster than 1Bx6. and slower than Bx7. Its nucleotide sequence was isolated based on homology clones. In a phylogenetic tree of 1Bx genes, 1Bx23* was apparently clustered with 1Bx23. Compared with 1Bx23. eight single nucleotide replacements caused four single amino acid replacements in 1Bx23*. The deletion of “G” at base pair 1463 and insertion of “A” at 1509 bps induced a 42-nucleotide frame shift. “GQRQQAGQWQRPGQ” was replaced by “DKGNRQDNGNDRDK”. The new segment cannot be found in other HMW-GSs, and it is very similar to a segment found in collagen. Moreover, an 18-nucleotide deletion made 1Bx23* six amino acids shorter than 1Bx23. The cultivar XM001593 had 28 chromosomes, which signifies that it was tetraploid wheat, and that the new HMW-GS 1Bx23* cannot be used directly for breeding in common wheat.

Restricted access

Red coleoptile is an easily observed agronomic trait of wheat and has been extensively studied. However, the molecular mechanism of this trait has not yet been revealed. In this study, the MYB gene TaMYB-D1 was isolated from the wheat cultivar ‘Gy115’, which possesses red coleoptiles. This gene resided at the short arm of the homoelogous group 7 chromosomes. TaMYB-D1 was the only gene expressed in the coleoptiles of ‘Gy115’ and was not expressed in ‘Opata’ and ‘CS’, which have uncoloured coleoptiles. Phylogenetic analysis placed TaMYB-D1 very close to ZmC1 and other MYB proteins regulating anthocyanin biosynthesis. The encoded protein of TaMYB-D1 had an integrated DNA binding domain of 102 amino acids and a transcription domain with 42 amino acids, similar to the structure of ZmC1. Transient expression analysis in onion epidermal cells showed that TaMYB-D1 was located at the plant nucleus, which suggested its role as a transcription factor. The expression of TaMYB-D1 was accompanied with the expression of TaDFR and anthocyanin biosynthesis in the development of the coleoptile of ‘Gy115’. Transient expression analysis showed that only TaMYB-D1 induced a few ‘Opata’ coleoptile cells to synthesize anthocyanin in light, and the gene also induced a colour change to red in many cells with the help of ZmR. All of these results suggested TaMYB-D1 as the candidate gene for the red coleoptile trait of ‘Gy115’.

Restricted access