Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: X.L. Qi x
  • All content x
Clear All Modify Search


Impaired intestinal barrier function has been demonstrated in the pathophysiology of diarrhea-predominant irritable bowel syndrome (IBS-D). This study aimed to describe the intestinal ultrastructural findings in the intestinal mucosal layer of IBS-D patients.


In total, 10 healthy controls and 10 IBS-D patients were analyzed in this study. The mucosa of each patient’s rectosigmoid colon was first assessed by confocal laser endomicroscopy (CLE); next, biopsied specimens of these sites were obtained. Intestinal tissues of IBS-D patients and healthy volunteers were examined to observe cellular changes by transmission electron microscopy (TEM).


CLE showed no visible epithelial damage or inflammatory changes in the colonic mucosa of IBS-D compared with healthy volunteers. On transmission electron microscopic examination, patients with IBS-D displayed a larger apical intercellular distance with a higher proportion of dilated (>20 nm) intercellular junctional complexes, which was indicative of impaired mucosal integrity. In addition, microvillus exfoliation, extracellular vesicle as well as increased presence of multivesicular bodies were visible in IBS-D patients. Single epithelial cells appeared necrotic, as characterized by cytoplasmic vacuolization, cytoplasmic swelling, and presence of autolysosome. A significant association between bowel habit, frequency of abdominal pain, and enlarged intercellular distance was found.


This study showed ultrastructural alterations in the architecture of intestinal epithelial cells and intercellular junctional complexes in IBS-D patients, potentially representing a pathophysiological mechanism in IBS-D.

Restricted access


1,7-Dihydroxy-3,8-dimethoxyxanthone (X1) and 1,8-dihydroxy-3,7-dimethoxyxanthone (X2) are two important xanthones of the Tibetan medicinal plant Gentianopsis paludosa (Hook. f.) Ma. They are very similar in structure, the only difference being exchange of OH and OCH3 at the 7 and 8 positions. By calculations based on the geometry of the molecules using the MM+ force field, the different distances between the hydroxyl groups of the two xanthones were obtained (4.64774 Å for X2 and 7.19412 Å for X1), therefore, the two hydroxyl groups of X1 should freely interact with more water molecules than those of X2 in aqueous solution. In other words, X2 is more hydrophobic than X1. Micellar electrokinetic capillary chromatography (MEKC) was therefore chosen for separation of the compounds. The optimum separation conditions were: 20 mm borate + 20 mm SDS (pH 9.8) as running buffer, 17.5 kV applied potential, and detection wavelength 260 nm. The two xanthones were well separated in 9.0 min, with Gaussian peak shapes. The repeatability of the MEKC method (expressed as RSD) for X1 and X2 was 0.9 and 1.1%, respectively, for migration time, and 3.1 and 1.4% for peak area. The limits of detection (S/N = 3) were 0.41 μg mL−1 for X1 and 0.82 μg mL−1 for X2. The recovery of the MEKC method for the two xanthones was also satisfactory.

Restricted access

Thinopyrum intermedium, which has many useful traits, is valuable for wheat breeding. A new wheat-Thinopyrum addition line, SN100109, was developed from the progeny of common wheat cultivar Yannong 15 and Th. intermedium. It was resistant to most races of Blumeria graminis f. sp tritici (Bgt), which caused powdery mildew in wheat, and its reactions were different from the reactions of gene Pm40 and Pm43. Genomic in situ hybridization (GISH) and molecular marker analysis were used to identify the genomic composition of SN100109. GISH results showed that SN100109 was a wheat-Th. intermedium disomic addition line containing one pair of J chromosomes, and the resistance gene was located on the alien additional chromosomes of SN100109. And four molecular markers BE425942, BF482714, Xgdm93 and BV679214 which were assigned to homologous group 2, were specific molecular markers of the additional chromosomes. All the results indicated that SN100109 contained one pair of 2J chromosomes. SN100109 can be used as a novel germplasm source for introducing powdery mildew resistance genes to wheat in breeding programs.

Restricted access

Grain yield (GY) and yield components (YC) were investigated using two F8: 9 RILs, comprising 229 and 485 lines, respectively. A conditional analysis was conducted to generate conditional values for GY independent of each YC. Then both unconditional and conditional values were analyzed to map QTLs with additive effect. In both RILs, up to 23 unconditional and conditional QTLs were detected. However, only two QTLs were identified repeatedly among environments. All QTLs, except for 4 detected in unconditional mapping, were also identified as conditional QTLs, whereas a number of QTLs were additionally detected in conditional mapping. The number of QTLs detected that affected GY was different with respect to component-special influences. Our results revealed that the contributions of YC influencing QTL expression related to GY differed.

Restricted access

To explore the physiological characteristics of the pepc gene in transgenic wheat (Triticum aestivum) plants, PEPC activities in various organs of T3 plants were analyzed at Feekes 6.0, Feekes 10.3 and Feekes 11.1, and compared to control, untransformed wheat cultivar Zhoumai 19. Net photosynthetic rates (P n) in leaves were also measured at the same stages. At Feekes 11.1, both transgenic and control plants were treated with DCDP. Yield traits were surveyed after harvest. The results indicated that P n and PEPC activity in the flag leaf of transgenic wheat were significantly higher than those of the control at different stages. At Feekes 10.3, P n reached the highest value at 28.2 μmol m−2 s−1 and PEPC activity reached the highest value at 104.6 μmol h−1 mg−1. Both factors significantly increased by 21% compared to the control at Feekes 11.1. PEPC activity in the flag leaf of transgenic plants was significantly higher than that of non-leaf organs. P n of transgenic plants was greatly reduced after DCDP treatment. In the flag leaf of transgenic wheat, P n was significantly correlated to PEPC activities at 0.01 probability level with a correlation coefficient of 0.8957**. The yield traits of transgenic line 1-27-3, such as 1000-grain weight, single spike weight and harvest index were higher than those of the control. Additionally, the spike weight of 1-27-3 showed an increase of approximately 9.5% compared to the control. These results indicated that the expression of maize (Zea mays) pepc gene was different across various organs of transgenic wheat and across every growth stage. Therefore, we conclude that introducing maize pepc gene into wheat plants can increase their P n and improve production.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: F. Xu, L. Sun, J. Zhang, Y. Qi, L. Yang, H. Ru, C. Wang, X. Meng, X. Lan, Q. Jiao, and F. Huang


Heat capacities of the carbon nanotubes (CNTs) with different sizes have been measured by modulated temperature differential scanning calorimetry (MDSC) and reported for the first time. The results indicated the values of C p increased with shortening length of CNTs when the diameters of CNTs were between 60 and 100 nm. However, the values of C p of CNTs were not affected by their diameter when the lengths of CNTs were 1–2 um, or not affected by the length of CNTs when their diameters were below 10 nm. The thermal stabilities of the CNTs have been studied by TG-DTG-DSC. The results of TG-DTG showed that thermal stabilities of CNTs were enhanced with their diameters increase. With lengths increase, the thermal stabilities of CNTs increased when their diameters were between 60 and 100 nm, but there is a slight decrease when their diameters were less than 60 nm. The further DSC analyses showed both released heat and T onset increased with the increase of CNTs diameters, which confirms the consistency of the results from both TG-DTG and DSC on CNTs thermal stability.

Restricted access