Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Xavier Polanco x
  • Refine by Access: All Content x
Clear All Modify Search

Summary  

We present a new kind of statistical analysis of science and technical information (STI) in the Web context. We propose a battery of indicators about Web users, used bibliographic records and e-commercial transactions. In addition, we introduce two Web usage factors and we give an overview of the co-usage analysis. For these tasks, we present a computer-based system, called Miri@d, which produces descriptive statistical information about Web users' searching behaviour, and what is effectively used from a free-access digital bibliographical database.

Restricted access

Abstract  

We argue in favour of artificial neural networks for exploratory data analysis, clustering andmapping. We propose the Kohonen self-organizing map (SOM) for clustering and mappingaccording to a multi-maps extension. It is consequently called Multi-SOM. Firstly the KohonenSOM algorithm is presented. Then the following improvements are detailed: the way of namingthe clusters, the map division into logical areas, and the map generalization mechanism. Themulti-map display founded on the inter-maps communication mechanism is exposed, and thenotion of the viewpoint is introduced. The interest of Multi-SOM is presented for visualization,exploration or browsing, and moreover for scientific and technical information analysis. A casestudy in patent analysis on transgenic plants illustrates the use of the Multi-SOM. We also showthat the inter-map communication mechanism provides support for watching the plants on whichpatented genetic technology works. It is the first map. The other four related maps provideinformation about the plant parts that are concerned, the target pathology, the transgenictechniques used for making these plants resistant, and finally the firms involved in geneticengineering and patenting. A method of analysis is also proposed in the use of this computerbasedmulti-maps environment. Finally, we discuss some critical remarks about the proposedapproach at its current state. And we conclude about the advantages that it provides for aknowledge-oriented watching analysis on science and technology. In relation with this remark weintroduce in conclusion the notion of knowledge indicators.

Restricted access

Abstract  

This paper present a compound approach for Webometrics based on an extension the self-organizing multimap MultiSOM model. The goal of this new approach is to combine link and domain clustering in order to increase the reliability and the precision of Webometrics studies. The extension proposed for the MultiSOM model is based on a Bayesian network-oriented approach. A first experiment shows that the behaviour of such an extension is coherent with its expected properties for Webometrics. A second experiment is carried out on a representative Web dataset issued from the EISCTES IST project context. In this latter experiment each map represents a particular viewpoint extracted from the Web data description. The obtained maps represented either thematic or link classifications. The experiment shows empirically that the communication between these classifications provides Webometrics with new explaining capabilities.

Restricted access
Scientometrics
Authors:
Cristhian Ruiz
,
Ricardo Bonilla
,
Diego Chavarro
,
Luis Orozco
,
Roberto Zarama
, and
Xavier Polanco

Abstract  

Applications of non-parametric frontier production methods such as Data Envelopment Analysis (DEA) have gained popularity and recognition in scientometrics. DEA seems to be a useful method to assess the efficiency of research units in different fields and disciplines. However, DEA results give only a synthetic measurement that does not expose the multiple relationships between scientific production variables by discipline. Although some papers mention the need for studies by discipline, they do not show how to take those differences into account in the analysis. Some studies tend to homogenize the behaviour of different practice communities. In this paper we propose a framework to make inferences about DEA efficiencies, recognizing the underlying relationships between production variables and efficiency by discipline, using Bayesian Network (BN) analysis. Two different DEA extensions are applied to calculate the efficiency of research groups: one called CCRO and the other Cross Efficiency (CE). A BN model is proposed as a method to analyze the results obtained from DEA. BNs allow us to recognize peculiarities of each discipline in terms of scientific production and the efficiency frontier. Besides, BNs provide the possibility for a manager to propose what-if scenarios based on the relations found.

Restricted access