Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Xiaojiang Duan x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

This work reports the synthesis, radiolabeling and preliminary biodistribution results in tumor-bearing mice of the 99mTc(CO)3–AOPA colchicine conjugate. The novel ligand was successfully synthesized by conjugation of N-(acetyloxy)-2-picolylamino (AOPA) to deacetylcolchicine via a short carbonyl-methylene linker. Radiolabeling was performed in high yield with [99mTc(CO)3]+ core. 99mTc(CO)3–AOPA colchicine conjugate was hydrophilic and was stable at room temperature. Biodistribution studies in tumor-bearing mice showed that 99mTc(CO)3–AOPA colchicine conjugate accumulated in the tumor with good uptake and retention. However, its clearance from normal organs was not so fast, resulting in poor T/NT ratios. Further modification on the linker or/and 99mTc-chelate to improve the tumor targeting efficacy and in vivo kinetic profiles is currently in progress.

Restricted access

Abstract  

This work reports the synthesis, radiolabeling and preliminary biodistribution results in tumor-bearing mice of [99mTc(CO)3(IDA–PEG3–CB)]. The novel chlorambucil derivative was successfully synthesized by conjugation of iminodiacetic acid (IDA) to chlorambucil via a pegylated linker. The ligand could be labeled by [99mTc(CO)3]+ core in high yield to get [99mTc(CO)3(IDA–PEG3–CB)], which was very hydrophilic and was stable at room temperature. Biodistribution studies in tumor-bearing mice showed that [99mTc(CO)3(IDA–PEG3–CB)] accumulated in the tumor with favorable uptake and retention. The good accumulation in tumor tissue with high tumor/muscle ratios warrants further research to improve tumor targeting efficacy and pharmacokinetic profile of radiolabeled chlorambucil derivative by structural modification.

Restricted access

Abstract  

This study reports the synthesis, radiolabeling and preliminary biodistribution results of [99mTc(CO)3(MN-TZ-BPA)]+ in tumor-bearing mice. The novel nitroimidazole derivative was successfully synthesized by conjugation of bis(pyridin-2-ylmethyl)amine (BPA) to 2-methyl-5-niroimidazole via “click” reaction. The ligand could be labeled by [99mTc(CO)3]+ core in high yield to get [99mTc(CO)3(MN-TZ-BPA)]+, which was very hydrophilic and was stable at room temperature. Biodistribution studies in tumor-bearing mice showed that [99mTc(CO)3(MN-TZ-BPA)]+ accumulated in the tumor with certain initial uptake while poor retention. The rapid clearance from normal organs with favorable tumor/muscle ratios warrants further research to improve tumor targeting efficacy and pharmacokinetic profile of radiolabeled nitroimidazoles by structural modification.

Restricted access

Abstract  

This work reports the synthesis and preliminary biodistribution results of [131I]SIB-PEG4-CHC in tumor-bearing mice. The tributylstannyl precursor ATE-PEG4-CHC was synthesized by conjugation of ATE to amino pegylated colchicine NH2-PEG4-CHC. [131I]SIB-PEG4-CHC was radiosynthesized by electrophilic destannylation of the precursor with a yield of ~44%. The radiochemical purity (RCP) appeared to be >95% by a Sep-Pak cartridge purification. [131I]SIB-PEG4-CHC was lipophilic and was stable at room temperature. Biodistribution studies in tumor-bearing mice showed that [131I]SIB-PEG4-CHC cleared from background rapidly, and didn’t deiodinate in vivo. However, the poor tumor localization excluded it from further investigations as a tumor-targeted radiopharmaceuticals.

Restricted access