Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Xiaoxia Yang x
  • All content x
Clear All Modify Search


A series of phosphorus modified Si-MCM-41 catalysts prepared via the impregnation method were used for the vapor-phase Beckmann rearrangement of cyclohexanone oxime to caprolactam. The catalysts were characterized by XRD, N2 adsorption, FT-IR, and NH3-TPD. The results indicated that weak acid sites increased with P content, leading to enhanced catalytic activity. The catalyst with Si/P mol ratio of 25 showed best performance at 633 K. The conversion of cyclohexanone oxime and the selectivity for caprolactam were 92.7 and 64.2%, respectively. The P–OH groups are main active sites for the Beckmann rearrangement. Grafting acid hydroxyl groups to cover the Si–OH groups may be a good way to improve the selectivity for this reaction.

Restricted access
Acta Microbiologica et Immunologica Hungarica
Authors: Fei Zhao, Zhong Liu, Yixin Gu, Yuelian Yang, Di Xiao, Xiaoxia Tao, Fanliang Meng, Lihua He, and Jianzhong Zhang

Mycoplasma pneumoniae (M. pneumoniae) is one of the most important pathogens that cause respiratory tract infection in children and adults. In this study, we describe a rapid and sensitive colorimetric loop mediated isothermal amplification (LAMP) method to detect M. pneumoniae. The specificity and sensitivity of this assay were detected with 21 common respiratory pathogens and 39 M. pneumoniae DNA. The sensitivity of LAMP was 100% among 39 M. pneumoniae isolates and the specificity was 100% among 9 members of other Mycoplasma and 12 common respiratory pathogens. The lowest detectable limit (LDL) of this assay was 102 copies, which detected by a series of standard M. pneumoniae DNA. To evaluate the clinical applicability of the LAMP assay, a total of 80 clinical samples were examined by conventional PCR, real-time PCR and the LAMP assays, respectively. The positive rates were 15.0%, 32.5% and 26.3%, respectively. This colorimetric LAMP assay demonstrated a high level of sensitivity comparable with that of conventional PCR for the detection of M. pneumoniae. It is a valuable method for simple, cost-effective and rapid detection of M. pneumoniae in the rural areas and basic clinical of China.

Restricted access