Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Y. C. Xiao x
Clear All Modify Search

Uniformity in the height of main stem and tillers is a key factor affecting ideal plant type, a key component in super high-yielding rice breeding. An understanding of the genetic basis of the panicle layer uniformity may thus contribute to breeding varieties with good plant type and high yield. In the present study, a doubled haploid (DH) population, derived from a cross between indica rice variety Zhai-Ye-Qing 8 (ZYQ8) and japonica rice variety Jing-Xi 17 (JX17) was used to analyze quantitative trait loci (QTL) for panicle layer uniformity related traits. Six, four and three QTL were detected for the highest panicle height (HPH), lowest panicle height (LPH) and panicle layer dis-uniformity (PLD), respectively. qHPH-1-1 and qPLD-1 were located at the same interval on chromosome 1. The JX17 allele(s) of these QTL increased HPH and PLD by 2.57 and 1.26 cm, respectively. Similarly, qPLD-7 and qHPH-7 were located at the same interval on chromosome 7, where the ZYQ8 allele(s) increased HPH and PLD by 3.74 and 1.96 cm, respectively. These four QTL were unfavourable for panicle layer uniformity improvement because a decrease of the PLD was accompanied by decrease of the plant height. qPLD-6 and qLPH-6-1 were located at the same interval on chromosome 6, however here the JX17 allele(s) increased LPH, but decreased PLD, suggesting that this QTL was favourable for improvement of panicle layer uniformity. The markers identified in this study are potential for marker assisted breeding for the improvement of the panicle layer uniformity and ideal plant type.

Restricted access
Cereal Research Communications
Authors: W.F. Song, Z.Y. Ren, Y.B. Zhang, H.B. Zhao, X.B. Lv, J.L. Li, C.H. Guo, Q.J. Song, C.L. Zhang, W.L. Xin and Z.M. Xiao

Two lines, L-19-613 and L-19-626, were produced from the common wheat cultivar Longmai 19 (L-19) by six consecutive backcrosses using biochemical marker-assisted selection. L-19 (Glu-D1a, Glu-A3c/Gli-A1?; Gli-A1? is a gene coding for unnamed gliadin) and L-19-613 (Glu-D1d, Glu-A3c/Gli-A1?) formed a set of near-isogenic lines (NILs) for HMW-GS, while L-19-613 and L-19-626 (Glu-D1d, Glu-A3e/Gli-A1m) constituted another set of NILs for the LMW-GS/gliadins. The three L-19 NILs were grown in the wheat breeding nursery in 2007 and 2008. The field experiments were designed using the three-column contrast arrangement method with four replicates. The three lines were ranked as follows for measurements of gluten strength, which was determined by the gluten index, Zeleny sedimentation, the stability and breakdown time of the farinogram, the maximum resistance and area of the extensogram, and the P andWvalues of the alveogram: L-19-613 > L-19-626 > L-19. The parameters listed above were significantly different between lines at the 0.05 or 0.01 level. The Glu-D1 and Glu-A3/Gli-A1 loci had additive effects on the gluten index, Zeleny sedimentation, stability, breakdown time, maximum resistance, area, P and W values. Although genetic variation at the Glu-A3/Gli-A1 locus had a great influence on wheat quality, the genetic difference between Glu-D1d and Glu-D1a at the Glu-D1 locus was much larger than that of Glu-A3c/Gli-A1? and Glu-A3e/Gli-A1m at the Glu-A3/Gli-A1 locus. Glu-D1d had negative effects on the extensibility and the L value compared with Glu-D1a. In contrast, Glu-A3c/Gli-A1? had a positive effect on these traits compared with Glu-A3e/Gli-A1m.

Restricted access

Shuganjieyu (SGJY) capsule is a classical formula widely used in Chinese clinical application. In this paper, an ultra-performance liquid chromatography coupled with electrospray ionization and ion trap mass spectrometry has been established to separate and identify the chemical constituents of SGJY and the multiple constituents of SGJY in rats. The chromatographic separation was performed on a C18 RRHD column (150 × 2.1 mm, 1.8 μm), while 0.1% formic acid–water and 0.1% formic acid–acetonitrile was used as mobile phase. Mass spectral data were acquired in both positive and negative modes. On the basis of the characteristic retention time (R t) and mass spectral data with those of reference standards and relevant references, 73 constituents from the SGJY and 15 ingredients including 10 original constituents and 5 metabolites from the rat plasma after oral administration of SGJY were identified or tentatively characterized. This study provided helpful chemical information for further pharmacology and active mechanism research on SGJY.

Open access