Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: Y. Ding x
  • All content x
Clear All Modify Search

Abstract  

With the computer simulations, it has been found that in Differential Thermal Analysis (DTA) the overlapped peaks do not satisfy the linear overlapping principle, and the relationship between the overlapped peaks is rather complex that is a function of sample thermal conductivity, specific heat, quantity and latent heats, etc. If the first point where the two peaks begin to overlap is at the posterior half of the first peak curve and the two overlapped peaks can be identified by two different peaks, from the curve of overlapped peaks we can know that the temperature corresponding to the first point deviating from the sample's first phase change curve is the sample's second phase change temperature.

Restricted access

A field experiment was carried out to study the effect of K nutrition and genotypic variation on the dry matter (DM) accumulation, and the K concentration, accumulation, uptake and utilization efficiency in barley (Hordeum vulgare L.). Successive increases in potassium nutrition had a significant effect on the dry matter and K accumulation either in the total or in various plant parts of barley at the tillering, stem elongation, heading and maturity growth stages. K nutrition also led to significantly higher grain yield with each unit K application than without K application. The yield increase due to K application was mainly due to the improvement in spike development from tillers. Dry matter and K accumulation in various plant parts varied significantly between genotypes at the main growth stages. Among the various plant parts, the stem contained the highest K concentration, had the highest K accumulation at maturity and changed considerably with the K level, while other plant parts remained relatively unchanged. Among the eleven genotypes, genotype 98-6 had the highest grain yield and the K use efficiency of this genotype was 10.4 kg grain per kg K applied. It could thus be used as a breeding line to breed barley varieties for higher productivity under rainfed conditions with low available soil potassium.

Restricted access

Abstract  

For the enhancement of thermal stability of poly(p-dioxanone) (PPDO), the isocyanate end-capping reagent was prepared by treatment of toluene-2,4-diisocyanate with an equivalent of 1-hexyl alcohol. The end-capping reagent and the end-capping PPDO with an inherent viscosity of 0.26 dL g−1 were characterized by FTIR and 1H-NMR. Thermal stability of the end-capping PPDO with an inherent viscosity of 0.92 dL g−1 was investigated isothermally and non-isothermally under air atmosphere using thermogravimetry. It has been shown that the addition of the prepared isocyanate can enhance significantly the thermal stability of PPDO. The activation energies for non-isothermal degradation estimated by Kissinger method and Friedman method are 91, 81 kJ mol−1 for as-prepared PPDO, and 160, 149 kJ mol−1 for the end-capping PPDO, respectively. The activation energy increases by about 70 kJ mol−1 through the end-capping.

Restricted access

Abstract  

AP/HTPB based composite propellants with additives such as ammonium oxalate (AO), mixture of ammonium oxalate and strontium carbonate (SC) was investigated by burning rate, TG-DTG and FTIR experiments. The results show that the burning rates of these propellants are decreased significantly. TG-DTG experiments indicate that decomposition temperatures of AP with these additives are increased. Furthermore, the activation energy of the decomposition reaction of AP is also increased in the presence of AO or AO/SC. These results show that AO or AO/SC restrains the decomposition of AP. The burning rates of these propellants are decreased. The burning rate temperature sensitivity of AP/HTPB based propellants is reduced significantly by the addition of AO or AO/SC. But the effect of AO is less than that of AO/SC. AO/SC is better effect to reduce temperature sensitivity and at the same time, to reduce pressure exponent. The reduced heat release at the burning surface of AP/HTPB/AO is responsible for the reduced temperature sensitivity. Synergetic action is probably produced between AO and SC within AP/HTPB based propellants in the pressure range tested. This synergetic effect causes the heat release to reduce and the burning surface temperature to increase. Moreover, it makes the net exothermal reaction of condensed phase become little dependent on T 0. Thus, the burning rate temperature sensitivity is reduced.

Restricted access

Abstract  

The neutron-rich target-like isotope 236Th has been produced in the 238U-2p multinucleon transfer reaction between a 60 MeV/u 18O beam and natural 238U targets. The activities of thorium were determined after radiochemical separation of Th from the mixture of uranium and reaction products. The 236Th isotope was identified by the characteristic γ-rays of 642.2, 687.6 and 229.6 keV. The production cross section of 236Th was determined to be 250±50 μb.

Restricted access

Abstract  

Highly oriented single crystal antimony nanowire arrays have been synthesized within anodic aluminum oxide (AAO) template by pulsed electrodeposition. Thermal behavior and oxidation analysis of the antimony nanowires have been investigated by means of thermogravimetry and differential scanning calorimetry in Ar and air atmosphere, respectively. Compared to bulk antimony, the antimony nanowires exhibit a lower sublimation temperature at 496.4°C. Evident oxidation of the Sb nanowires occurs at 429.8°C in air atmosphere and α-Sb2O4 nanowires have been obtained as the oxidation product. The results indicate that the sublimation and the oxidation of the antimony nanowires in the AAO template is a slow multi-step process. The present results are of relevance when processing antimony nanowries for thermoelectric applications at high temperatures.

Restricted access

Summary

An HPLC-DAD-ESI-MSn method has been developed for simultaneous quantification of eight major compounds in eight Saussurea species which have long been used as the traditional Tibetan medicines. The method was validated for sensitivity, precision, and accuracy. LODs were from 0.11 to 5.01 μg mL−1, overall intra-day and inter-day variation was less than 2.70%, and overall recovery was over 98.0%. The correlation coefficients (r 2) of the calibration plots were >0.991. This newly established method was successfully used to reveal difference among the chemical profiles and analytes contents of eight Saussurea species collected in Tibet. In addition, by comparison of UV and mass spectra with those of authentic compounds, a total of fifteen peaks were identified. It can be concluded that this is an effective method for quantification and evaluation of the flavonoids and coumarins in the eight species of the genus Saussurea. It can be used as an efficient reference method for development and use of the eight traditional Tibetan medicines by comparing their different characteristics.

Restricted access

Abstract  

Thermal analysis on two new heterometallic sulfide clusters, [PPh4]2[WS3(CuBr)3]2 and [PPh4]2[MoS3(CuBr)3]2 (where PPh4=tetraphenyl phosphonium, =pentamethylcyclopenta- dienyl), was carried out using a simultaneous TG-DTA unit in an atmosphere of flowing nitrogen and at various heating rates. Supplemented using EDS method, their thermal behavior and properties, together with the composition of their intermediate product, were examined and discussed in connection with their distinctive molecular structure as a dianion, which provided some theoretically and practically significant information. Both clusters decomposed in a two-step mode, but without a stable new phase composed of Mo/W-Cu-S formed during their decomposition process as we expected. Based on TG-DTG data, four methods, i.e. Achar-Brindley-Sharp, Coats-Redfern, Kissinger and Flynn- Wall-Ozawa equation, were used to calculate the non-isothermal kinetic parameters and to determine the most probable mechanisms.

Restricted access

Abstract  

In order to measure 182Hf by accelerator mass spectrometry (AMS), a chemical procedure for separation of hafnium from tungsten has been developed by extraction chromatography. The extraction chromatographic behavior of hafnium and tungsten has been studied using tri-n-octylamine (TOA) as the stationary phase, HCl–H2O2 mixture and NH3·H2O as the mobile phase. The effects of H2O2 concentration, column loading and column dimensions are investigated. Hf and W with microgram amounts are successfully separated on a chromatographic column (Ø5 × 196 mm), on which Hf is hardly retained after completely eluted with 6 M HCl–1% H2O2 and W strongly adsorbed is then eluted with 3 M NH3·H2O. The decontamination factor for tungsten is 3.0 × 105 and the recovery of hafnium is better than 99% using a single column separation.

Restricted access

Abstract  

Solvent extraction of protactinium with tri-iso-octyl-amine (TIOA) in xylene, benzene, carbon tetrachloride and chloroform from HCl, HF, HNO3, HClO4 and H2SO4 media was studied using 233Pa as a radiotracer. The extraction efficiencies of protactinium were determined as a function of shaking time, concentrations of mineral acids in aqueous phase, extractant concentrations and diluents in organic phase. The extraction mechanism was discussed. The results show that the extracted species in the organic phase is [(R3NH)nPa(OH)xCl y 5−xy ].

Restricted access