Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: Y. Han x
  • Refine by Access: All Content x
Clear All Modify Search

Polysaccharides from litchi (Litchi chinensis) seeds were isolated and purified using ion exchange column chromatography. Molecular weight distribution of polysaccharides and monosaccharides were detected. Preliminary structural characterisation of polysaccharides was conducted using infrared, nuclear magnetic, and other spectroscopy techniques in combination with methylation analysis. In vitro cell culture experiments were designed to detect the effects of polysaccharides on cell growth and cellular glucose consumption. We extracted and analysed three polysaccharides from litchi seed. Monosaccharide composition and infrared spectroscopy detection showed that the skeleton structure of polysaccharides consisted of glucose and mannose. Polysaccharides 1 and 2 are similar and have relatively high glucose content (around 70%); polysaccharide 3 has 39.17% glucose only but is rich in arabinose (about 21.03%). In a certain range of use (50~1000 μg ml–1), polysaccharides 1 and 2 have no significant impacts on cell growth, while polysaccharide 3 can promote proliferation to some extent. All three polysaccharides can promote in vitro cellular glucose consumption, especially polysaccharide 3, which shows the strongest promotion, a significant dose effect, and synergistic effect with insulin. The above results highlight important roles of litchi seed polysaccharides in promoting cell growth and validate litchi seed polysaccharides as potential drugs for hypoglycaemia.

Restricted access

Abstract  

The inhibitory effects of three berberine alkaloids (BAs) from Coptis chinensis Franch on Bifidobacterium adolescentis growth were investigated by microcalorimetry. The growth rate constant (k) and maximum heat-output power (Pmax) decreased and peak time of maximum heat-output power (tp) prolonged with the increase of BAs concentration. Half inhibitory ratios (IC50) BAs were respectively 790.3 (berberine), 339.6 (coptisine) and 229.8 μL−1 (palmatine), which indicated the sequence of their antimicrobial activity: berberine<coptisine<palmatine. Combined with previous findings, the sequence which could show the bioactivity of Bacillus shigae and Escherichia coli was: berberine>coptisine>palmatine. The structure-function relationship of BAs indicated that the functional group methylenedioxy or methoxyl at C2 and C3 might be the major group inducing the activities of BAs on E. coli and B. adolescentis. Meanwhile, the substituent groups at C2, C3, C9 and C10 almost had equal effect on B. shigae.

Restricted access

Abstract  

The Korea Atomic Energy Research Institute (KAERI) completed the High-flux Advanced Neutron Application Reactor (HANARO) in 1995 and the radioisotope production facilities(RIPF) in 1997. Many devices and handling tools were developed and applied for the production of radioisotopes. Emphasis on RI production plan was placed on the development of new radiopharmaceuticals, the development of new radiation sources for industrial use and the steady production of selected radioisotopes. The selected items are 166Ho-based pharmaceuticals, fission 99Mo/99mTc generators, and products of 131I and 192Ir and 60Co sources for industrial use. Now KAERI regularly produces radioisotopes (131I, 99mTc, 166Ho, 192Ir, 60Co etc.) and labeled compounds including 99mTc cold kits. Newly developed therapeutic agents are a 166Ho-chitosan complex for liver cancer treatment, a 166Ho patch for skin cancer treatment and devices such as the stent and balloon for the prevention against restenosis of the coronary artery. Feasibility studies on the installation of a 99mTc generator loading facility and on 60Co production for food irradiation were finished. The 192Ir sealed source assembly for NDT has been supplied to domestic users since May 2001. The fission moly process, separation process of non-sealed sources (125I, 33P, 89Sr, 153Sm, 188Re) and fabrication process of sealed sources (169Yb, 75Se) are also under development. For the quality assurance of our final products, we obtained ISO certification in 2000. We are carrying out a feasibility study on a new research reactor for the stable supply of radioisotopes in Korea.

Restricted access

Summary

A simple and rapid capillary electrophoretic procedure for analysis of matrine and oxymatrine in Kushen medicinal preparations has been developed and optimized. Orthogonal design was used to optimize the separation and detection conditions for the two active components. Phosphate concentration, applied potential, organic modifier content, and buffer pH were selected as variable conditions. The optimized background electrolyte contained 70 mM sodium dihydrogen phosphate and 30% acetonitrile at pH 5.5; the separation potential was 20 kV. Each analysis was complete within 5 min. Regression equations revealed linear relationships (r > 0.999) between peak area and amount for each component. The detection limits were 1.29 μg mL−1 for matrine and 1.48 μg mL−1 for oxymatrine. The levels of the two active compounds in two kinds of traditional Chinese medicinal preparation were easily determined with recoveries of 96.57–106.26%. In addition, multiple linear regression and a non-linear model using a radial basis function neural network approach were constructed for prediction of the migration time of oxymatrine. The predicted results were in good agreement with the experimental values, indicating that a radial basis function neural network is a potential means of prediction of separation time in capillary electrophoresis.

Open access

Wheat glutenins containing high and low molecular weight glutenin subunits (HMW-GS and LMW-GS) are the major determinants of wheat gluten quality. In this study, the recently developed reversed-phase ultra-performance liquid chromatography (RP-UPLC) was used to study the synthesis and accumulation patterns of glutenins during grain development of four Chinese bread wheat cultivars with different gluten quality. Developing grains were collected based on thermal times from 150 °Cd to 750 °Cd at 100 °Cd intervals, and the content of glutenin subunits and their accumulation patterns were determined by RP-UPLC as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The results showed that HMW-GS and LMW-GS synthesis were initiated currently at 250 °Cd and they displayed a gradually upregulated expression. All the HMW-GS can be detected at 250 °Cd, earlier than LMW-GS. Different glutenin subunits and genotypes showed clear accumulation diversity during grain development. Particularly, 1Dx5 + 1Dy10 in the cultivar Gaocheng 8901 and Zhongyou 9507 with superior dough properties were accumulated faster at early stages than 1Dx2 + 1Dy12 in Jingdong 8 and Zhengmai 9023 with poor dough quality, suggesting that faster accumulation rate of glutenin proteins at the early stages of grain development may contribute to the formation of superior gluten structure and dough quality.

Restricted access

Seed germination is a new beginning for the crop life cycle, which is closely related to seed sprouting and subsequent plant growth and development, and ultimately affects grain yield and quality. Salt stress is one of the most important abiotic stress factors that restrict crop production. Therefore, it is highly important to improve crop salt tolerance and sufficient utilization of saline-alkali land. In this study, we identified the phosphorylated proteins involved in salt stress response by combining SEM, 2-DE, Pro-Q Diamond staining and tandem mass spectrometry. The results showed that salt stress significantly inhibited seed germination and starch degradation. In total, 14 phosphorylated protein spots (11 unique proteins) in the embryo and 6 phosphorylated protein spots (4 unique proteins) in the endosperm were identified, which mainly involved in stress/defense, protein metabolism and energy metabolism. The phosphorylation of some proteins such as cold regulated proteins, 27K protein, EF-1β and superoxide dismutase could play important roles in salt stress tolerance.

Restricted access

Abstract  

Microcalorimetric measurements of the polymerization of actin in the presence of 100 mM KCl and 2 mM MgCl2were carried out with a Calvet MS-80 microcalorimeter at temperatures from 293.15 to 310.15 K. It was observed that the polymerization of actin was endothermic and the enthalpy change for actin polymerization was temperature-dependent. The enthalpy change ΔHowas fitted to ΔHo(kJ mol-1)=434.0-1.16 (T/K) and the change in heat capacity ΔCp ocalculated from ΔHowas -1.16 kJ (mol K)-1in the above range of temperatures. The direct calorimetry results showed that the enthalpy and entropy change for actin polymerization could not be obtained from measurements of the critical concentration and the only way to assess the enthalpy change for the polymerization of actin and similar reactions lies in the use of calorimetry.

Restricted access

Abstract  

Trace impurity elements in high purity copper metal (4 mine class) put on the market were analyzed by Instrumental Neutron Activation Analysis (INAA) and the results compared with those from Graphite Furnace Atomic Absorption Spectrophotometry (GFAAS) and Inductively Coupled Plasma Atomic Emission Spectrophotometry (ICP-AES). The sample irradiation was done at the irradiation facilities (thermal neutron flux, 5·1012 n·cm−2·s−1) of the TRIGA Mark-III research reactor in the Korea Atomic Energy Research Institute. Four unalloyed copper standards (NIST SRM # 393, 394, 395 and 398) were used to identify the accuracy and precision of the analytical procedure. The homogeneity of samples was assessed by means of the elements such as Ag, As, Co, Sb, Se and Zn. The analytical results of INAA, GFAAS and ICP-AES were in good agreement within expected uncertainties each other and showed the possibility of using them for the analytical quality control.

Restricted access

Abstract  

The newly manufactured N-isopropylacrylamide (NIPAM) polymer gel is composed of four components, i.e., gelatin, monomer (NIPAM), crosslinker (N,N’-methylenebisacrylamide, Bis), and antioxidant (tetrakis hydroxymethyl phosphonium chloride, THPC). In this study, we investigated the effects of gel composition on the dose response of NIPAM polymer gel. A statistical experiment to analyze the contribution of each composition to the linearity and sensitivity of NIPAM gel was performed. Results indicate that the amount of gelatin, NIPAM (15.17%), Bis, and THPC have dominant effects on the sensitivity of the gel, with contributions of 59.73, 15.17, 10.64, and 14.45%, respectively. The amount of gelatin and Bis mainly affected the linearity of the gel, with contributions of 44.70 and 50.99%, respectively. The linearity of most compositions of the gel was greater than 0.99 when (%C)/(%T) was lower than 8.0. Optimal (%C)/(%T) for higher sensitivity should be in the range of 4−9. The temporal stability experiment showed that the dose response curve attained stability at about 5 h after irradiation and persisted up to 3 months.

Restricted access