Search Results

You are looking at 1 - 10 of 32 items for

  • Author or Editor: Y. Tan x
Clear All Modify Search

Abstract  

Synthesis, characterization and thermal analysis of polyaniline (PANI)/ZrO2 composite and PANI was reported in our early work. In this present, the kinetic analysis of decomposition process for these two materials was performed under non-isothermal conditions. The activation energies were calculated through Friedman and Ozawa-Flynn-Wall methods, and the possible kinetic model functions have been estimated through the multiple linear regression method. The results show that the kinetic models for the decomposition process of PANI/ZrO2 composite and PANI are all D3, and the corresponding function is ƒ(α)=1.5(1−α)2/3[1−(1-α)1/3]−1. The correlated kinetic parameters are E a=112.7±9.2 kJ mol−1, lnA=13.9 and E a=81.8±5.6 kJ mol−1, lnA=8.8 for PANI/ZrO2 composite and PANI, respectively.

Full access

Abstract  

A simple direct labeling method was used to synthesize the iodinated ultrafine polystyrene particles. The assay of X-ray photoelectron spectroscopy (XPS) as well as Fourier-transform infrared (FT-IR) spectroscopy indicated the formation of stable covalent bond to aryl group of the polymer particles. The purified radioiodinated product was incubated with serum of rat, and then evaluated by in vitro stability test. The result showed that these synthesized ultrafine polystyrene particles were unmetabolized at 2 hours post-exposure, indicating the potential useful application of this labeled polymer particles as a promising probe in biomedical sciences.

Full access

Abstract  

Conducting polyaniline/Cobaltosic oxide (PANI/Co3O4) composites were synthesized for the first time, by in situ deposition technique in the presence of hydrochloric acid (HCl) as a dopant by adding the fine grade powder (an average particle size of approximately 80 nm) of Co3O4 into the polymerization reaction mixture of aniline. The composites obtained were characterized by infrared spectra (IR) and X-ray diffraction (XRD). The composition and the thermal stability of the composites were investigated by TG-DTG. The results suggest that the thermal stability of the composites is higher than that of the pure PANI. The improvement in the thermal stability for the composites is attributed to the interaction between PANI and nano-Co3O4.

Full access

Abstract  

N,N,N',N'-Tetrabutyladipicamide (TBAA) was used for the extraction of nitric acid and uranyl(II) ion from nitric acid media into toluene. The effects of nitric acid, uranyl(II) ion, and extractant concentration, temperature and back extraction on the distribution coefficient of uranyl(II) ion have been studied. The main adduct of TBAA and HNO3 is TBAA·HNO3 in 1.0 mol/l nitric acid solution. The 1:2:2 complex of uranyl(II) ion, nitrate ion and TBAA as extracted species is further confirmed by IR spectra of the extraction of uranyl(II) ion with TBAA. The values of the thermodynamic parameters have also been calculated.

Full access

Abstract  

Nano-ZnO flakes were synthesized by calcination of the precursor of Zn(OH)2 obtained via the reactive ion exchange method between an ion exchange resin and ZnSO4 solution at room temperature. Scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscope, UV-Vis diffuse reflection spectrum and Na2EDTA titration were used to characterize the structure features and chemical compositions of the as-prepared ZnO. The results show that the as-prepared ZnO flakes have uniform structure and high purity. Heat capacities in the temperature range of 83 to 396 K were measured. The measured heat capacities values were compared with those of coarse crystal powders and the difference between this two heat capacity curves was analyzed.

Full access

Abstract  

A novel AB2-type monomer diethyl 5-(4-hydroxyethoxyphenylazo)isophthalate for preparing hyperbranched azo polymers (HBPAZO) was synthesized. The monomer obtained was characterized by IR spectra, UV–Vis spectra, 1H NMR spectrum and C NMR spectrum. The TG-DTG/DTA curves show that the decomposition of the monomer proceeds in four steps. During the second-step decomposition, the mass loss occurs between 480.5 K and 579.0 K and the phenomena of condensing to HBPAZO for the melted monomer was found. So it is inferred that this temperature range is the best for polycondensation of the melted monomer, which is very important for synthesizing of HBPAZO.

Full access

Abstract  

The molar heat capacity C p,m of 1,2-cyclohexane dicarboxylic anhydride was measured in the temperature range from T=80 to 390 K with a small sample automated adiabatic calorimeter. The melting point T m, the molar enthalpy Δfus H m and the entropy Δfus S m of fusion for the compound were determined to be 303.80 K, 14.71 kJ mol−1 and 48.43 J K−1 mol−1, respectively. The thermodynamic functions [H T-H 273.15] and [S T-S 273.15] were derived in the temperature range from T=80 to 385 K with temperature interval of 5 K. The thermal stability of the compound was investigated by differential scanning calorimeter (DSC) and thermogravimetry (TG), when the process of the mass-loss was due to the evaporation, instead of its thermal decomposition.

Full access

Thermodynamic investigation of several natural polyols (II)

Heat capacities and thermodynamic properties of sorbitol

Authors: B. Tong, Z. Tan, Q. Shi, Y. Li and S. Wang

Abstract  

The low-temperature heat capacity C p,m of sorbitol was precisely measured in the temperature range from 80 to 390 K by means of a small sample automated adiabatic calorimeter. A solid-liquid phase transition was found at T=369.157 K from the experimental C p-T curve. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80 to 355 K, C p,m/J K−1 mol−1=170.17+157.75x+128.03x 2-146.44x 3-335.66x 4+177.71x 5+306.15x 6, x= [(T/K)−217.5]/137.5. In the temperature range of 375 to 390 K, C p,m/J K−1 mol−1=518.13+3.2819x, x=[(T/K)-382.5]/7.5. The molar enthalpy and entropy of this transition were determined to be 30.35±0.15 kJ mol−1 and 82.22±0.41 J K−1 mol−1 respectively. The thermodynamic functions [H T-H 298.15] and [S T-S 298.15], were derived from the heat capacity data in the temperature range of 80 to 390 K with an interval of 5 K. DSC and TG measurements were performed to study the thermostability of the compound. The results were in agreement with those obtained from heat capacity measurements.

Full access
Authors: X. Liu, F. Tan, Y. Cheng and D. Chen

Abstract  

DSC and TG-DTA techniques were used to investigate micro-sized silver powder particles and the adsorption of ethyl cellulose on these particles in a solution of ethyl acetate. The apparent specific heat of the silver particles was determined, and the kinetics of temperature-programmed desorption (TPD) of these adsorbed silver particles was investigated. Results show that the apparent specific heat and desorption kinetic parameters obtained by thermal analysis techniques could be used to characterize certain physico-chemical properties of such a particulate system.

Full access

Abstract

Methylcellulose (MC) is a thermo-reversible physical hydrogel. This study investigates the thermodynamic characteristics of gelation mechanism for MC. The relative and absolute specific heat capacity values of the hydrogel system were modeled using an empirical formulation to facilitate calculation of thermodynamic parameters. Experiments verifying the assumptions for the model formulation were conducted and are discussed. Parameters such as enthalpy, entropy, and changes in their magnitude as a function of temperature were calculated and their trends were studied. The implications of these observations on the various stages of the gel formation process and the associated mechanisms are evaluated. The studies revealed that the gelation of MC is a temperature- driven process rather than only driven by the heat input, and it attains a state of equilibrium under isothermal conditions. During gelation, the entropy of the overall (MC+water) system increases due to an increase in the disorderliness of the MC system.

Full access