Search Results

You are looking at 1 - 10 of 98 items for

  • Author or Editor: Y.J. Wang x
  • Refine by Access: All Content x
Clear All Modify Search

Artificial grassland plots with various degrees of diversity were established near Heishiding Nature Reserve, Guangdong Province, China. After an establishment phase of one year, one half of each plot was exposed to drought stress in order to explore the relationship between diversity and compositional stability of the grassland communities. The experiment showed that relationships between diversity and compositional stability varied with the diversity values in non-stressed control subplots and the duration of drought disturbance. When control subplots had higher evenness, species richness negatively affected compositional stability, which led to a negative relationship between diversity and compositional stability. When control subplots had lower evenness, compositional stability was determined by evenness or species identity (particular species) at different periods of drought disturbance. This resulted in negative, weakly positive or no relationships between diversity and compositional stability. Based on these results, we suggest that different relationships between diversity and compositional stability, and controversial data from such relationships in previous studies may reflect differences in environmental and experimental conditions.

Restricted access

Abstract  

Radioiodination of tri-n-butylstannyl-3-quinuclidinyl benzilate (TQNB) and N-succinimidyl-3-(tri-n-butylstannyl) benzoate (STB) was studied. STB was radiolabeled efficiently using iodogen to prepare radioactive N-succinimidyl-3- iodobenzoate (S125IB). TQNB was radioiodinated using Chloramine-T to obtain radioactive iodo-3-quinuclidinyl benzilate (125IQNB). Both S125IB and 125IQNB showed good stability at room temperature in the dark.

Restricted access

Summary The thermal behavior of poly(L-lactic acid) (PLLA) was studied with differential scanning calorimetry (DSC) and polarized optical microscopy. For amorphous PLLA samples, double cold crystallisation peaks were observed in the DSC traces during heating process, being strongly dependent on heating rates. The observation was discussed based on the assumption that the quenched PLLA sample presented some remaining metastable or a precrystalline phase. A small exothermal peak was observed before the main melting peak at low heating rates. The probable reason was discussed through melt-recrystallisation mechanism. Influence of thermal history on the cold crystallisation and melting behavior was also performed on heating process for PLLA samples.

Restricted access

Abstract  

To develop potential new Tc radiopharmaceuticals, a novel compound [99mTc(CO)2(NO)(EHIDA)]0 (EHIDA: 2,6-diethylphenylcarbamoylmethyliminodiacetic acid) has been prepared by reacting [99mTc(CO)3)(EHIDA)] with NOBF4 both in water and acetonitrile. The conversion of [99mTc(CO)3)(EHIDA)] to [99mTc(CO)2(NO)(EHIDA)]0 was supported by TLC, HPLC and eletrophoresis. The radiochemical purity (more than 99%) was proved by TLC and HPLC. The biodistribution in mice demonstrated that [Tc(CO)2(NO)(EHIDA)]0 showed higher uptake in blood, kidney and lung (15 min, blood: 19.24±2.95; kidney: 13.61±3.49; lung: 10.81±1.09.) but a lower uptake in liver (15 min, 5.73±0.74). The slower clearances (120 min, blood: 12.75±1.34; kidney: 13.61±3.49) from blood and kidney were also found. This research describes two methods for the conversion of [99mTc(CO)3]+ into [99mTc(CO)2)(NO)]2+ by using NOBF4 as the source of NO+ both in organic solvent and water. The latter method offers the possibility to introduce the NO-group in high yield in water.

Restricted access

Summary

A new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous determination of glycyrrhizin, formononetin, glycyrrhetinic acid, liquiritin, isoliquiritigenin, and licochalcone A in licorice. An Eclipse Plus C18 column (I.D. 4.6 × 100 mm, 3.5 μm particle size; Agilent) was used in the analysis. Electrospray ionization (ESI)-tandem interface in the negative mode was performed, and multiple reaction monitoring (MRM) was employed with the precursor multiple reaction monitoring production combination for the determination of six analytes. The average recoveries ranged from 98.30% to 100.13% with relative standard deviations (RSDs) ≤ 1.95%, and limits of detection (LODs) ranged from 2.1 to 3.6 pg. The applicability of this analytical approach was confirmed by the successful analysis of six samples. The results indicated that the established method was validated, sensitive, and reliable for the determination of six analytes in licorice.

Open access

Abstract  

The effect of excipients on the secondary structure of lyophilized proteins was studied through second-derivative Fourier transform infrared (FTIR) spectroscopic analysis. The glass transition temperature (T g), denaturation temperature (T d) and moisture content were determined by differential scanning calorimetry (DSC) and thermogravimetry (TG). T g, T d and the preservation of protein secondary structure were found to be dependent upon the type and amount of the excipient included in the formulation. Meanwhile, the lyophilized proteins easily adsorbed amounts of moisture during storage to reduce their T gs and stability.

Restricted access

Abstract  

Heat capacities of both the ingot-like and melt-spun Al-Sr alloys have been measured through the temperature range 373 to 1060 K using differential scanning calorimetry. The experimental results show that rapid solidification has a slight effect on the temperature dependence of the heat capacities of the Al-Sr alloys. The heat capacities of the melt-spun Al-Sr alloys increase more slowly than those of the ingot-like alloys with increasing temperature from 373 to 900 K. Furthermore, the effect of rapid solidification on the heat capacities becomes more obvious with increasing Sr concentration in the Al-Sr alloys. The data of the heat capacities between 373 and 900 K have been fitted with the least square method and a linear dependence on temperature was assumed for that temperature range.

Restricted access

Abstract  

The concentration of 8 REEs (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in 17 species of plants and their host soil, which were collected from a rare earth ore area located in the south of China, have been determined by INAA. The chondritic normalized REE patterns for different parts of plants (e.g., leaf stem and root) and their host soils were studied. The results showed that the concentration levels of REE for most plants in the sampling area were elevated. Particularly, the leaves of the fern (Dicranopteris dichotoma) contain extremely high concentration of the total REE (675–3358 g/g) Generally, these REE distribution patterns in every part of plants were very similar and reflected the characteristics of their host soils. However, the chondritic normalized REE patterns in some plants relative to the host soil revealed obvious fractionation, such as the depletion of the heavy REE (for fernCitrus reticulata andBrassia campestris), the heavy REE enrichment (forCamellia sinensis, Camellia oleifera andZiziphus) and the Ce positive anomaly (forGardenia jasminoides).

Restricted access

Abstract  

Biochemical techniques, including pH variation, outsalting, ultracentrifugation, gel filtration chromatography and electrophoresis, etc., have been employed together with instrumental neutron activation analysis (INAA) to study the rare earth elements (REE) bound proteins in the natural plant fern,Dicranopteris dichitoma. INAA was also used to identify whether the proteins were bound firmly with REE. The results obtained show that two REE bound proteins (RBP-I and RBP-II) have been separated. The molecular weight of RBP-I on Sephadex G-200 gel column is about 8·105 Daltons and that of RBP-II is less than 12,400 Daltons, respectively. However, SDS-PAGE of the two proteins shows that they mainly have two protein subunits with MW 14,100 and 38,700 Daltons. They are probably conjugated proteins, glycoproteins with different glyco-units.

Restricted access

Summary

A high-performance liquid chromatographic (HPLC) method coupled with photodiode array (PDA) detection has been developed and validated for simultaneous analysis of six active components (syringin, hyperoside, baicalin, quercetin, baicalein, and farrerol) of the Chinese medicinal preparation Qin-Bao-Hong antitussive tablet. The optimum conditions for separation were achieved on a 3.9 mm × 150 mm i.d., 5-μm particle, C18 column with a linear mobile phase gradient prepared from acetonitrile and 1% acetic acid at a flow rate of 1.0 mL min−1. Because of the different UV characteristics of these compounds, four detection wavelengths were used for the quantitative analysis (265 nm for syringin, 256 nm for hyperoside and quercetin, 277 nm for baicalin and baicalein, and 296 nm for farrerol). For all the analytes a good linear regression relationship (r > 0.999) was obtained between peak area and concentration over a relatively wide range. The method was validated for repeatability, precision, stability, accuracy, selectivity, and robustness. The validated method was successfully applied to simultaneous analysis of these active components in Qin-Bao-Hong antitussive tablet from different production batches.

Full access