Search Results

You are looking at 1 - 10 of 15 items for

  • Author or Editor: Y.L. Zheng x
  • All content x
Clear All Modify Search

Abstract  

Epoxidized natural rubbers (ENRs) with different extents of epoxidation (B) were prepared under various reaction conditions. The effects of the amount of H2O2 and the reaction time on B are discussed. The glass transition temperature T g, the thermal degradation temperature and the activation energy of thermal degradation of the ENRs increase with B. The results indicate that the thermal stability of the ENRs increases with B.

Restricted access

Summary

In the present paper, a simple and reliable high-performance liquid chromatography-diode array detection (HPLC-DAD) method was developed both for quantitative determination and fingerprint analysis of Agrimonia pilosa Ledeb for quality control. Under the optimized HPLC conditions, seven bioactive compounds including rutin, quercetin-3-rhamnoside, luteoloside, tiliroside, apigenin, kaempferol, and agrimonolide were determined simultaneously. For fingerprint analysis, 11 common peaks were selected as the characteristic peaks to evaluate the similarities of 16 different samples collected from different origins in China. Besides, hierarchical cluster analysis (HCA) was also performed to evaluate the variation of the raw materials. This is the first report of using a simple method for quality control of A. pilosa Ledeb through multi-component determination and chromatographic fingerprint analysis to the best of our knowledge.

Restricted access

In this paper, the wind energy resource in China’s oilfields is analyzed, the difference between China’s energy consumption structure and that of the world in average is analyzed as well, and the application prospect of wind heating technology in China’s oilfields is discussed as an example to reform China’s energy consumption structure. It shows that it is possible to use wind energy as an appropriate heat resource or supplementary heat source in some oilfields to supply heat energy for oil heating and living, more room to improve the energy resource utilization in various fields in China remain. It is a benefit to both oilfield and society to improve energy saving and environments.

Open access

Grains of 12 accessions of Triticum timopheevii (Zhuk.) Zhuk. ssp. timopheevii (AAGG, 2n = 4x = 28) and one bread wheat cultivar Chinese Spring (CS) and one durum wheat cultivar Langdon (LDN) grown across two years were analyzed for grain iron (Fe) and zinc (Zn) concentrations. All the 12 tested T. timopheevii ssp. timopheevii genotypes showed significantly higher concentration of grain Fe and Zn than CS and LDN. Aboundant genetic variability of both the Fe and Zn concentrations was observed among the T. timopheevii ssp. timopheevii accessions, averagely varied from 47.06 to 90.26 mg kg−1 and from 30.05 to 65.91 mg kg−1, respectively. Their grain Fe and Zn concentrations between years exhibited a significantly positive correlation with the correlation coefficients r = 0.895 and r = 0.891, respectively, indicating the highly genetic stability. Flag leaf possessed twice or three times higher concentrations for both Fe and Zn than grain, and a significantly high positive correlation appeared between the two organs with r = 0.648 for Fe and r = 0.957 for Zn concentrations, respectively, suggesting flag leaves might be indirectly used for evaluating grain Zn and Fe contents. Significant correlations occurred between grain Fe and Zn concentrations, and between grain Zn concentration and the two agronomic traits of plant height and number of spikelets per spike. Both the concentrations were not related to seed size or weight as well as NAM-G1 gene, implying the higher grain Fe and Zn concentrations of T. timopheevii ssp. timopheevii species are not ascribed to concentration effects of seed and the genetic control of NAM-G1 gene. There might be some other biological factors impacting the grain’s Zn and Fe concentrations. These results indicated T. timopheevii ssp. timopheevii species might be a promising genetic resource with high Fe and Zn concentrations for the biofortification of current wheat cultivars.

Restricted access
Cereal Research Communications
Authors: L. Zhang, Z. Yan, S. Dai, Q. Chen, Z. Yuan, Y. Zheng, and D. Liu

Two experiments to investigate the crossability of Triticum turgidum with Aegilops tauschii are described. In the first experiment, 372 wide hybridization combinations were done by crossing 196 T. turgidum lines belonging to seven subspecies with 13 Ae. tauschii accessions. Without embryo rescue and hormone treatment, from the 66220 florets pollinated, 3713 seeds were obtained, with a mean crossability percentages of 5.61% which ranged from 0 to 75%. A lot of hybrid seeds could germinate and produce plants. Out of 372 combinations, 73.12% showed a very low crossability less than 5%, 23.39% showed the crossability of 5–30%, 2.69% showed the crossability of 30–50%, 0.81% showed high crossability more than 50%, respectively. Among the seven T. turgidum subspecies, there were significant differences in crossability. The ssp. dicoccoides and dicoccon showed the highest crossability, while polonicum the lowest. All the crossability percentages more than 30% were obtained from the crossing of ssp. dicoccoides or dicoccon with Ae. tauschii .In the second experiment, the genetics of crossability was investigated using T. turgidum ssp. durum cultivar Langdon and the D-genome disomic substitution lines of Langdon. Compared with the control Langdon, lines 7D(7A) and 4D(4B) showed higher crossability, which suggested that chromosomes 7A and 4B of tetraploid wheat cv. Langdon carried dominant alleles inhibiting crossability with Ae. tauschii . The relationships of present results with previously reported crossability genes of wheat are discussed.

Restricted access

Summary

A preparative high-speed countercurrent chromatograph (HSCCC) method for the isolation and purification of C6-C2 natural alcohol and benzyl ethanol from Forsythia suspensa was successfully established. Cornoside, forsythenside F, forsythiaside, and acteoside were rapidly obtained for the first time by HSCCC with a two-phase solvent system ethyl acetate-n-butanol-methanol-water (5:1:0.5:5, υ/υ) in one-step separation. The purities of them were all above 97% as determined by high-performance liquid chromatography, and the combination of ESI-MS and NMR analysis confirmed the chemical structures of the four compounds.

Restricted access

Chromosome segment substitution lines (CSSLs) are powerful tools to combine naturally occurring genetic variants with favorable alleles in the same genetic backgrounds of elite cultivars. An elite CSSL Z322-1-10 was identified from advanced backcrosses between a japonica cultivar Nipponbare and an elite indica restorer Xihui 18 by SSR marker-assisted selection (MAS). The Z322-1-10 line carries five substitution segments distributed on chromosomes 1, 2, 5, 6 and 10 with an average length of 4.80 Mb. Spikilets per panicle, 1000-grain weight, grain length in the Z322-1-10 line are significantly higher than those in Nipponbare. Quantitative trait loci (QTLs) were identified and mapped for nine agronomic traits in an F3 population derived from the cross between Nipponbare and Z322-1-10 using the restricted maximum likelihood (REML) method in the HPMIXED procedure of SAS. We detected 13 QTLs whose effect ranging from 2.45% to 44.17% in terms of phenotypic variance explained. Of the 13 loci detected, three are major QTL (qGL1, qGW5-1 and qRLW5-1) and they explain 34.68%, 44.17% and 33.05% of the phenotypic variance. The qGL1 locus controls grain length with a typical Mendelian dominance inheritance of 3:1 ratio for long grain to short grain. The already cloned QTL qGW5-1 is linked with a minor QTL for grain width qGW5-2 (13.01%) in the same substitution segment. Similarly, the previously reported qRLW5-1 is also linked with a minor QTL qRLW5-2. Not only the study is important for fine mapping and cloning of the gene qGL1, but also has a great potential for molecular breeding.

Restricted access
Cereal Research Communications
Authors: Y.P. Jing, D.T. Liu, X.R. Yu, F. Xiong, D.L. Li, Y.K. Zheng, Y.F. Hao, Y.J. Gu, and Z. Wang

The objective of the present study was to understand the developmental regularity of wheat endosperm cells at different Days After Pollination (DAP) using microscopic and histochemical methods. Resin semi-thin sections of the endosperm and the enzymatically dissociated Starchy Endosperm Cells (SECs) were observed under a light microscope. The results showed that: (1) SECs were irregular-shaped and had two types of starch granules: large oval-shaped A-type starch granules and small spherical B-type starch granules. (2) The growth shape of SECs was referred to as S-curve and the fastest cell growth period was at 16–24 DAP. (3) The largest increase and growth of A-type starch granules were mainly at 4–16 DAP. B-type starch granules increased rapidly after 16 DAP and made up over 90% of the total starch granules in SEC during the late stage of endosperm development. (4) The nuclei of SEC deformed and degenerated during the middle and late stages of endosperm development and eventually disappeared. However, starch granules still increased and grew after the cell nuclei had degenerated. The investigations showed the development regularity of starch endosperm cells and starch granules, thereby improving the understanding of wheat endosperm development.

Restricted access

Aegilops sharonensis (Sharon goatgrass) is a valuable source of novel high molecular weight glutenin subunits, resistance to wheat rust, powdery mildew, and insect pests. In this study, we successfully hybridized Ae. sharonensis as the pollen parent to common wheat and obtained backcross derivatives. F1 intergeneric hybrids were verified using morphological observation and cytological and molecular analyses. The phenotypes of the hybrid plants were intermediate between Ae. sharonensis and common wheat. Observations of mitosis in root tip cells and meiosis in pollen mother cells revealed that the F1 hybrids possessed 28 chromosomes. Chromosome pairing at metaphase I of the pollen mother cells in the F1 hybrid plants was low, and the meiotic configuration was 25.94 I + 1.03 II (rod). Two pairs of primers were screened out from 150 simple sequence repeat markers, and primer WMC634 was used to identified the presence of the genome of Ae. sharonensis. Sequencing results showed that the F1 hybrids contained the Ssh genome of Ae. sharonensis. The sodium dodecyl sulfate polyacrylamide gel electrophoresis profile showed that the alien high molecular weight glutenin subunits of Ae. sharonensis were transferred into the F1 and backcross derivatives. The new wheat-Ae. sharonensis derivatives that we have produced will be valuable for increasing resistance to various diseases of wheat and for improving the quality of bread wheat.

Restricted access

To study the development of starch granules in polyploid wheats, we investigated the expression of starch synthetic genes between the synthetic hexaploid wheat SHW-L1, its parents T. turgidum AS2255 and diploid Ae. tauschii AS60. The synthetic hexaploid wheat SHW-L1 showed significantly higher starch content and grain weight than its parents. Scanning electron microscopy (SEM) showed that SHW-L1 rapidly developed starch granules than AS2255 and AS60. The amount of B-type granule in AS60 was less than that in SHW-L1 and AS2255. RT-qPCR result showed that the starch synthetic genes AGPLSU1, AGPLSU2, AGPSSU1, AGPSSU2, GBSSI, SSIII, PHO1 and PHO2 expressed at earlier stages with larger quantity in SHW-L1 than in its parents during wheat grain development. The expression of the above mentioned genes in AS60 was slower than in SHW-L1 and AS2255. The expression pattern of starch synthase genes was also associated with the grain weight and starch content in all three genotypes. The results suggested that the synthetic hexaploid wheat inherited the pattern of starch granule development and starch synthase gene expression from tetraploid parent. The results suggest that tetraploid wheat could plays more important role for starch quality improvement in hexaploid wheat.

Restricted access