Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: Y.N. Wang x
  • All content x
Clear All Modify Search

Eight cultivars of dry-land wheat (Triticum aestivum L.) historically planted in Shaanxi Province, China, were grown in plots with irrigation and drought treatments during the growing seasons of 2011–2014, so as to characterize the differences in the rate and duration of the grain-filling stage among cultivars. The experimental results showed no obvious change among cultivars with respect to the duration of the grain-filling stage and no significant correlation between duration and grain weight. The filling rates of all three phases (lag, linear, and mature periods) showed significant differences among cultivars and had a greater effect on the grain weight than the duration of the filling stage, even though drought decreased the filling rate in the linear and mature periods. A lower filling rate led to a lighter grain weight in inferior grains than in superior grains. For the superior and inferior grains in the central spikelets, modern cultivars possess faster filling rates, especially in the lag and linear periods, whereas for the whole spike, no significant trend with cultivar replacement was observed. Faster filling rates with stable filling durations will be beneficial in obtaining additional yield increases.

Restricted access

Elsholtzia densa Benth. var. densa (Lamiaceae) is a famous medicinal herb which has been widely used for treatment of colds, headaches, pharyngitis, fever, diarrhea, digestion disorder, rheumatic arthritis, nephritises, and nyctalopia in China. In this study, fraction of the ethyl alcohol extract of E. densa (aerial part) by different polarity solvents indicated that the ethyl acetate soluble fraction exhibited a potent 1,1-diphenyl-2-picryhydrazyl (DPPH) radical scavenging activity with the IC50 value of 148.2 μg/mL. Under the target guidance of DPPH experiment, isoquercitrin, trachelogenin, ethyl caffeate, and arctigenin were separated with purities 95.98%, 92.98%, 96.07%, and 88.83%, respectively, by a dual-mode high-speed counter-current chromatography (HSCCC) method using n-hexane–ethyl acetate–methanol–water (4.5:5:3:4, v/v/v/v) as the solvent system. In order to evaluate the scientific basis, antioxidant activity of four isolated compounds was assessed by the radical scavenging effect on DPPH radical; isoquercitrin and ethyl caffeate showed stronger antioxidant activities with IC50 values of 9.4 μg/mL and 9.2 μg/mL, respectively, while trachelogenin and arctigenin showed weak antioxidant activities with IC50 values of >500 μg/mL and 72.8 μg/mL, respectively. Results of the present study indicated that the combinative method using DPPH antioxidant assay and dual-mode HSCCC could be widely applied for rapid screening and isolating of antioxidants from complex traditional Chinese medicine extract.

Open access

Summary  

Iodine deficiency disorders (IDD) are one of most common nutritional deficiencies in the world. The nuclear analytical methods (ENAA, SRXRF and XRF) were employed to study the effect of iodine deficiency on the metal ion changes during the stage of brain development, combined with biochemical methods. The results show that the distributions of iron, copper and zinc varied to different extent in different brain regions and subcellular fractions of the ID rat brains. These distributional changes of trace elements might be associated with the brain damage caused by the iodine deficiency.

Restricted access
Cereal Research Communications
Authors: X. Gong, C. Liu, Y. Wang, X. Zhao, M. Zhou, M. Hong, S. Wang, N. Li, and F. Hong

The mechanism of the fact that Mn deficiency damages the photosynthesis of plants is not yet fully understood. The main aim of the study was to determine Mn deficiency effects in photophosphorylation and key enzymes of CO 2 assimilation of maize. Maize plants were cultivated in Hoagland’s solution. They were subjected to Mn deficiency and to Mn administered in the Mn-deficient Hoagland’s media. The results showed that Mn deficiency was found to cause extensive declines in plant weight and chlorophyll a content, electron transport and oxygen-evolving rate, photophosphorylation rate, activities of Mg 2+ -ATPase, Ca 2+ -ATPase, Rubisco and Rubisco activase, and mRNA expressions of Rubisco and Rubisco activase of maize, but it only slightly affected chlorophyll b and carotenoid formation. However, Mn addition decreased the inhibition of the photosynthesis in maize caused by Mn deficiency.

Restricted access

The aim of this study was to investigate the effects of maternal lead exposure on the learning and memory ability and expression of tau protein phosphorylation (P-tau) and beta amyloid protein (Aβ) in hippocampus of mice offspring. Pb exposure initiated from beginning of gestation to weaning. Pb acetate administered in drinking solutions was dissolved in distilled deionized water at the concentrations of 0.1%, 0.5% and 1% groups. On the 21 th of postnatal day, the learning and memory ability of the mouse pups was tested by Water Maze test and the Pb levels in blood and hippocampus of the offspring were also determined. The expression of P-tau and Aβ in hippocampus was measured by immunohistochemistry and Western blotting. The Pb levels in blood and hippocampus of all exposure groups were significantly higher than that of the control group ( P < 0.05). In Water Maze test, the performances of 0.5% and 1% groups were worse than that of the control group ( P < 0.05). The expression of P-tau and Aβ was increased in Pb exposed groups than that of the control group ( P < 0.05). Tau hyper-phosphorylation and Aβ increase in the hippocampus of pups may contribute to the impairment of learning and memory associated with maternal Pb exposure.

Restricted access

Fusarium head blight (FHB, caused by Fusarium graminearum) is a severe disease which threatens the yield and quality of harvested grain products, and hence causes major economic losses in wheat (Triticum spp.) and other small grain cereals. One of the infection routes for the pathogen is believed to be through the extruded anther. In order to study the role of the anther on FHB infection, FHB resistance was measured among wheat (Triticum aestivum L.) cultivars with non-extruded infertile anthers in cytoplasmic male sterile (CMS) lines and with extruded fertile anthers in their alloplasmic maintainer lines, and in an unrelated restorer line. We artificially inoculated the lines with F. graminearum (isolate NE 90) at 1.0 × 105 or 2.0 × 105 spores mL−1 for 72 or 96 hours. The results indicated that CMS cultivars were significantly more resistant than the maintainer and restorer cultivars. As the CMS lines differed from the maintainer lines by cytoplasm, anther health, anther extrusion, and seed set, additional experiments are needed to determine the role of each factor in infection. However, this research indicates that fertile anthers most likely are an important part of the infection pathway and of susceptibility to FHB.

Restricted access

The present study was to evaluate the survival rate of free and encapsulated Bifidobacterium bifidum BB28 under simulated gastrointestinal conditions and its stability during storage. Results showed that non-microencapsulated Bifidobacterium bifidum BB28 was more susceptible to simulated gastrointestinal conditions than microencapsulated bacteria. Microencapsulated Bifidobacterium BB28 exhibited a lower population reduction than free cells during exposure to simulated gastrointestinal conditions, the viable count of monolayer microcapsules, double layer microcapsules, and triple layer microcapsules decreased by nine magnitudes, four magnitudes, and one magnitude after 2 h, respectively. The enteric test showed that the microorganism cells were released from the monolayer, double layer, and triple layer microcapsules completely in 40 min. Moreover, the optimum storage times of free Bifidobacterium BB28, monolayer microcapsules, double layer microcapsules, and triple layer microcapsules were 21 days, 21 days, 28 days, and more than 35 days in orange juice, pure milk, and nutrition Express (a commercially available milk based drink), and the viable counts were maintained at 1×106 CFU g−1 or more, which means that the double layer and triple layer of microcapsules of B. bifidum BB28 have great potential in food application.

Restricted access

Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks., is a major disease that causes substantial losses to wheat production worldwide. The utilization of effective resistance genes in wheat cultivars is the preferred control of the disease. To study the inheritance of all-stage resistance in spring wheat cultivars Louise, WA008016, Express, Solano, Alturas and Zak from the Pacific Northwest (PNW) of the United States, the six cultivars were crossed with the Chinese susceptible variety Taichung 29. Single-spore isolates of CYR32 and CYR33, the predominant Chinese races of P. striiformis f. sp. tritici, were used to evaluate F1, F2 and BC1 generations for stripe rust resistance under controlled greenhouse conditions. Genetic analysis determined that Louise had one dominant resistance gene to CYR32, temporarily designated as YrLou. WA008016 had two dominant and one recessive resistance genes to CYR32, temporarily designated as YrWA1, YrWA2 and YrWA3, respectively. Express had a single recessive gene that conferred resistance to CYR32, temporarily designated as YrExp3. The two independent dominant genes in Solano conferring resistance to CYR32 were temporarily designated as YrSol1 and YrSol2. Alturas had two recessive genes for resistance to CYR32, temporarily designated as YrAlt1 and YrAlt2. Zak has one dominant gene for resistance to CYR33, temporarily designated as YrZak1. These six cultivars can be important resistance sources in Chinese wheat stripe rust resistance breeding.

Restricted access

Physiological male sterility induced by the chemical hybridizing agent (CHA) overcomes problems of maintenance of sterile lines and restorers. However, the mechanism of sterility is unclear. The process of tapetum of CHA-treated ‘Xi’nong 2611’ at uninucleate, binucleate and trinucleate were compared with control to determine if tapetum varying differently during developmental stages. Tapetal degradation in CHA-treated ‘Xi’nong 2611’ began at late uninucleate stage, somewhat earlier than control plants. Cytological observations indicated that the gradual degradation of the tapetum in CHA-treated ‘Xi’nong 2611’ was initiated and terminated earlier than in the control. These findings implied that CHA-induced male sterility was related to abnormally early tapetal degradation. In order to indicate the role of the SKP1 gene in fertility/sterility in wheat, its expression was assessed in anthers at uninucleate, binucleate and trinucleate stages. SKP1 expression was reduced in the later developmental stages, and there was an obvious decrease from the uninucleate to trinucleate stages. Higher expression of the SKP1 gene occurred in ‘Xi’nong 2611’ compared to CHA-treated ‘Xi’nong 2611’. This implied that SKP1 gene expression was inhibited during the fertility transformation process and was related to transformation from fertility to sterility. Moreover, the results from this study suggest that SKP1 plays an essential role of conducting fertility in physiological male sterility.

Restricted access
Cereal Research Communications
Authors: N. Niu, Y.X. Bai, S. Liu, Q.D. Zhu, Y.L. Song, S.C. Ma, L.J. Ma, X.L. Wang, G.S. Zhang, and J.W. Wang

Studies of the pollen abortion mechanism in thermo-sensitive male sterile lines may provide a strong foundation for breeding hybrid wheat and establishing a theoretical basis for marker-assisted selection. To investigate the cause of pollen abortion in Bainong thermo – sensitive male sterile (BNS) lines, we analyzed the properties of pollen grains, changes in the tapetum and microspores in different anther developmental stages, and the distribution and deposition of nutrient substances in microspores. We found that tapetum degraded in the early uninucleate stage in sterile BNS (S-BNS), which was earlier than that of fertile BNS (F-BNS) tapetum. Large amounts of insoluble polysaccharides, lipids, and proteins were deposited until the trinucleate pollen stage in the nutritive cells in F-BNS. At the binucleate stage, the vacuoles disappeared and pollen inclusion increased gradually. At the trinucleate stage, these nutrients would help pollen grains mature and participate in fertilization normally. Therefore, early degradation of the tapetum, which inhibits normal microspore development, and the limited content of nutrient substances in pollen may be the main factors responsible for male sterility in BNS lines.

Restricted access