Search Results

You are looking at 1 - 10 of 27 items for

  • Author or Editor: Yong Chung x
  • All content x
Clear All Modify Search

Abstract  

Instrumental neutron activation analysis has been applied in the determination of toxic and other trace elements in a set of three algae materials provided by the International Atomic Energy Agency, with the aim of environmental preservation through enhanced applications of nuclear analytical techniques. The quality of the analysis method has been evaluated by analyzing a number of biological standard reference materials. By adding mineral nutrients, the cultivation of algae for metals is enhanced, in particular, selected toxic heavy metals such as As, Cd, Cr, Hg, Ni and Pb. It is believed that the level of elemental concentration in algae samples are dependent on environmental conditions due to its biochemical properties. Therefore, algae materials may be useful as an indicator or controller of environmental water pollution.

Restricted access

Abstract  

The aim of this research was to enhance the use of nuclear analytical techniques for air pollution studies and to study the feasibility of the use of instrumental neutron activation analysis (INAA) as a routine monitoring tool to reveal environmental pollution sources. For the collection of air particulate samples, the Gent stacked filter unit, low volume sampler with Nucleopore membrane filters were used. Trace elements in samples collected at two suburban residential sites, Taejon and Wonju city in the Republic of Korea, were analyzed by INAA. Variations of the elemental concentrations were measured monthly and the enrichment factors were calculated for the fine (<2 μm EAD) and coarse size (2–10 μm EAD) fractions. The analytical data were treated statistically to estimate the relationship between the two variables, the concentrations of elements and the total suspended particulate matter. The results were used to describe the emission source and their correlation.

Restricted access

Abstract  

Trace and toxic elements in Certified Reference Material (CRM) made of Korean rice at the Korea Research Institute of Standards and Science have been analyzed by Instrumental Neutron Activation Analysis (INAA). Data intercomparison from the measurement with those of Atomic Absorption Spectrometry (AAS) and Induced Coupled Plasma Spectrometry (ICPS) has been studied. The powdered samples were sterilized at 1.5·106 rad in the bottles using a60Co source after sieving and spiking to specific elements such as As, Cd, Cr, Cu and Hg and then the homogeneity of samples was assessed. Rice flour (SRM 1568a) and standard solutions made by the National Institute of Standards Technology (NIST) were used to construct the calibration curves for the INAA and the chemical methods, respectively. The uncertainties and concentration of constituent elements were determined and the possibility of their use for analytical quality control was considered.

Restricted access

Abstract  

To identify and improve the analytical technique for air pollution research, four kinds of environmental standard samples, i.e., airbome particulate matter, coal flyash, soil and pine needle supplied from the NIST and the IAEA were analyzed using thermal and epithermal neutron activation techniques. Sample irradiation was done at the irradiation facilities (neutron flux, 1 · 1013 n·cm–2·s–1) of the TRIGA MARK-III Research Reactor in the Korea Atomic Energy Research Institute. The accuracy and precision for the analysis of 40 trace and toxic elements in the samples were compared with the certified and reported values, respectively. In the analytical results of all standard reference materials, the relative standard deviation were within the 15% except for 11 elements and the relative error were agreed within the 10–20% except for 13 elements. The benefit of epithermal activation was investigated and the optimum analytical condition is reported.

Restricted access

Abstract  

This study performs a webometric analysis to explore the communication characteristics of scientific knowledge in a national scholarly Web space comprising top ranking universities and government supported research institutions in South Korea. We found significant differences in scholarly communication activity as well as linking behavior among different subspaces in addition to institutional differences. We also found the usefulness of the ADM approach in analyzing the metric data containing extreme outliers and discovered the directory model as the most appropriate. Page counts were found significantly correlated with inlinks as well as with outlinks at the directory level in the whole scholarly Web space.

Restricted access

Summary  

A prompt gamma activation analysis facility has been constructed on the ST1 horizontal beam port at the HANARO research reactor, KAERI in 2003. The detector system consists of a high-purity Ge detector surrounded by BGO/NaI(Tl) scintillators as an annulus type to reject the Compton scattered photons. Detection sensitivity for boron was obtained from the prompt gamma-ray spectra of boric acid, B(OH)3, containing 0.1-65 μg boron. The net peak for the calculation of the boron concentration was obtained by eliminating the sodium 472 keV peak, involved in the boron 478 keV peak. The biological samples used are NIST SRMs such as Peach Leaves, Apple Leaves, Tomato Leaves, Spinach Leaves, Total Diet, Typical Diet, Oyster Tissue and Corn Bran, etc. The measured values for high boron concentration showed up to a 3% of the relative, but in a low concentration below 5 ppm, present values were higher than the certified ones.

Restricted access

Abstract  

Neutron activation analysis (NAA) has been studied to improve the accuracy and sensitivity of the analysis of trace and ultratrace metallic impurities in plastic materials. There are two main problems in the analysis of plastics by NAA. First the contamination during sample preparation, especially sample crushing procedure is very serious for ultratrace analysis. Another problem is the destruction of the sample capsule due to the pressure build-up by the gases formed during neutron irradiation. A simple preparation technique of the sample crushing method using liquid nitrogen and reducing the capsule pressure by a pin hole was developed to solve the above problems. Two different irradiation and seven cooling conditions were also investigated to optimize the experimental conditions. A SRM from NIST (1632b coal) has been used to investigate the accuracy of the analysis. More than thirty elements could be analyzed in the range of sub-ppb to percent. Samples analyzed in this work were polyethylene and polypropylene which were made by different manufacturing procedure, and pigments. Two kinds of plastic products used for food and drug containers were also analyzed. It was found that NAA could be a powerful technique for the analysis of metallic impurities in plastics even though their concentrations were at ultratrace levels.

Restricted access

Abstract  

Instrumental neutron activation analysis was used to measure the concentrations of about 27 elements associated with airborne PM 10 samples that were collected from a roadside sampling station at a moderately polluted urban area of Taejon city, Korea. The magnitude of their concentrations was clearly distinguished and spanned over four orders. If compared in terms of enrichment factors, it was found that certain elements (e.g., As, Br, Cl, Sb, Se, and Zn) are enriched in PM 10 samples of the study site. The factor analysis indicated three factors with statistical significance, which may exert dominant controls on regulating the metal concentration levels in the study area.

Restricted access

Abstract  

Instrumental neutron activation analysis was used for the analysis of 25 trace elements in airborne particulate matter (PM) for air pollution monitoring. For the collection of air samples, the Gent stacked filter unit low volume sampler and two types of Nuclepore polycarbonate filters were employed. Samples were collected at selected sampling dates in suburban and industrial regions of Daejon city in the Republic of Korea. Mass concentrations and black carbon of PM were measured, and enrichment factors were calculated. The results were used to describe the emission sources and their correlation patterns.

Restricted access

Abstract  

The removal of Cs and Re (as a surrogate for Tc) by selective precipitation from the simulated fission products which were co-dissolved with uranium during the oxidative dissolution of spent fuel in a Na2CO3–H2O2 solution was investigated in this study. The precipitations of Cs and Re were examined by introducing sodium tetraphenylborate (NaTPB) and tetraphenylohosponium chloride (TPPCl), respectively. The precipitation of Cs by NaTPB and that of Re by TPPCl each took place within 5 min, and an increase in temperature up to 50 °C and a stirring speed up to 1000 rpm hardly affected their precipitation rates. The most important factor in the precipitation with NaTPB and TPPCl was found to be a pH of the solution after precipitation. Since Mo tends to co-precipitate with Cs or Re at a lower pH, an effective precipitation with NaTPB and TPPCl was done at pH of above 9 without the co-precipitation of Mo. More than 99% of Cs and Re were precipitated when the initial concentration ratio of NaTPB to Cs was above 1 and when that of TPPCl to Re was above 1. The precipitation of Cs and Re was never affected by the concentration of Na2CO3 and H2O2, even though they were raised up to 1.5 and 1.0 M, respectively. Precipitation yields of Cs and Re in a Na2CO3–H2O2 solution were found to be dependent on the concentration ratios of [NaTBP]/[Cs] and [TPPCl]/[Re].

Restricted access