Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Young Ho Kim x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The analysis algorithm, which simultaneously interprets the transfer route and types of nuclear materials and the types of transfer container, has been developed for the radioactive material transfers in the nuclear facility. This method can be accomplished by integration of video images based on pixel differences and radiation data imported by NDA radiation sensors in real time. This technology, based on pattem recognition by neural networks, is well suited for surveillance systems of large automated facilities, spent fuel storage facilities and new conceptual hot cell facilities such as DUPIC(Direct Use of spent PWR fuel in CANDU reactors) facility.

Restricted access

Background and Aims

One’s belief in good luck, and belief that it is a personal trait, could play a crucial role in gambling behavior, and can lead gamblers to have an irrational anticipation to win and to over-generalize their subjective sense of control. And upward counterfactual thinking has been considered to be a factor that offsets those irrational beliefs. This study examined the effects of belief in good luck and of upward counterfactual thinking on gambling behavior.

Methods

The subjects of the study were 52 college students who had been classified as non-problematic and non-pathological gamblers. They were assigned into one of two groups, distinguished by having either high (n = 25) or low (n = 27) levels of self-perception of luck, as determined by their scores on the Belief in Good Luck (BIGL) Scale. The subjects were assigned to different groups according to their reported experience of upward counterfactual thinking.

Results

We found that those who had high BIGL scores spent more money on gambling than those who had low BIGL scores. Moreover, after taking into account the upward counterfactual thinking, the subjects with high BIGL scores showed a dramatic decrease in their expectations of winning.

Discussion

The results indicate that to perceive luck as a personal and internal trait could affect gambling, which is one of the cognitive errors for gambling addiction. On the other hand, given that upward counterfactual thinking plays an important role in reducing cognitive errors, it could act as a protective factor against gambling addiction.

Open access

Abstract  

The formation of precipitates by hydrazine was experimentally examined in the simulated high level liquid waste (HLLW), which was composed of 9 elements (Nd, Fe, Ni, Mo, Zr, Pd, Ru, Cs, Sr). Palladium was precipitated over 90% above 0.05M of hydrazine concentration and at 2M HNO3, while all of the other elements were hardly precipitated. The elements of Pd and Zr were precipitated 93% and 70% in the simulated solution in which the concentrations of Zr and Mo were decreased from 0.069M to 3.45·10–3M and 6.9·10–3M, respectively, and the acid concentration was decreased to about 0.5M after denitration. In a Pd solution of 0.5M and 2M HNO3, the precipitation yield of Pd increased with hydrazine concentration and reached over 98% at 0.1M. The precipitation yield of Pd at 0.5M HNO3 was higher than at 2M HNO3. The Pd precipitate, formed by adding hydrazine to an acidified solution, was an amorphous compound consisting of Pd, hydrazine, nitrate and hydrate.

Restricted access

A new high molecular weight polyimide based on 4,4′-oxidiphthalic anhydride (ODPA) dianhydride and 2,2′-dimethyl-4,4′-diaminobiphenyl (DMB) diamine has been synthesizedvia a one-step polymerization method. This polyimide is soluble in phenolic solvents. Films from 7 to 30 μm thick were cast from the polymer solution and show in-plane orientation on a molecular scale detected by Fourier transform infrared spectroscopy experiments. This anisotropic structure leads to anisotropic optical properties arising from two different refractive indices along the inplane and out-of-plane directions. ODPA DMB possesses high thermal and thermo-oxidative stability. The glass transition temperature has been determined to be 298 °C. Dynamic mechanical analyses show two relaxation processes appearing above room temperature: the β- and the α-relaxation processes. The α-relaxation corresponds to the glass transition while the β-relaxation is a secondary relaxation process associated with the non-cooperative subsegmental motion.

Restricted access

Abstract  

The present scientific study on uranium(VI) solvent extraction and vanadium(V) separation from sulfate solutions using Alamine 336 as an extractant diluted in kerosene was established. The preliminary experiments indicating the uranium extraction process will follow the solvation as well as ion-exchange mechanisms. In the present acid region (0.1–1.0 mol dm−3 H2SO4) it showing the ion-exchange type mechanism. Time (1–120 min) and temperature (25–55 °C) not influencing the present extraction system. Other experimental parameters like loading capacity of Alamine 336, stripping of uranium from loaded organic phase, recycling of Alamine 336 and separation of uranium(VI)/vanadium(V) was studied.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: Dong-Yong Chung, Eung-Ho Kim, Young-Joon Shin, Jae-Hyung Yoo, Cheong-Song Choi, and Jong-Duk Kim

Abstract  

The decomposition rate of oxalate by hydrogen peroxide has been investigated by a KMnO4 titration method. The rate equation for decomposition of hydrogen peroxide in the aqueous phase is 1n([H2O2]/[H2O2]0)=–k1·t, where k1=0.2, for [H+]<2M, k1=0.2+0.34([H+]–2), for [H+]>2M. As the acidity increases over 2M, an acid catalysis effect appeard. The new rate equation proposed for the decomposition of oxalate by hydrogen peroxide is

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$- \frac{d}{{dt}}X_{[OX]} = k_2 [H_2 O_2 ]_0 (1 - X_{[OX]} )(e^{ - k_1 t} - \frac{{[OX]_0 }}{{[H_2 O_2 ]_0 }}X_{[OX]} )$$ \end{document}
The rate constant for decomposition of oxalate, k2, increased with nitric acid concentration and the effect of hydrogen ion concentration was expressed as k2=a[H+]n, where the values fora andn were a=1.54, n=0.3 at [H+]<2M, a=0.31, n=2.5 at [H+]>2M, respectively.

Restricted access

Abstract

Platinum catalysts supported on silicas with various physicochemical properties were prepared in order to investigate the effect of silica characteristics on their platinum dispersion and catalytic activity in the oxidation of carbon monoxide. Although titania-incorporation into silica and further treatment of the impregnated platinum precursor with hydrogen peroxide were effective for improving the dispersion and stability of platinum catalysts supported on silicas, regardless of the characteristic of the silicas, the platinum catalysts supported on fumed silica with a medium level of surface hydroxyl group concentration exhibited the highest catalytic activity among those supported on mesoporous silica, silica gel, and precipitated silica. The required properties of the highly active platinum catalyst seemed to be a high dispersion of platinum, the formation of a stable titania layer, and the generation of strong acid sites. By contrast, the precipitated silica with a small surface area and high concentration of surface hydroxyl groups was not appropriate for a catalytic support for platinum catalysts.

Restricted access

Abstract

During the process of fermentation, the chemical compositions of trifoliate orange (Poncirus trifoliate (L). Raf) changed greatly. To provide a completely phytochemical profile, high-performance liquid chromatography-diode array detector-hyphenated with tandem mass spectrometry (HPLC–DAD–ESI-MS/MS) has been successfully applied to screen and identify the unknown constituents of trifoliate orange during fermentation, which make it available for the quality control of fermented products. Multivariate statistical analysis was performed to classify the trifoliate oranges based on the status of fermentation. A total of 8 components were identified among the samples. Hierarchical Clustering Analysis (HCA) and Principal Component Analysis (PCA) demonstrated the fermented and unfermented trifoliate oranges were obviously different, an effective and reliable Partial Least Square Discriminate Analysis (PLS-DA) technique was more suitable to provide accurate discrimination of test samples based their different chemical patterns. Furthermore, a permutation validated the reliability of PLS-DA and variable importance plot revealed that the characterized syringing, naringin, and poncirin showed the high ability to distinguish the trifoliate oranges during fermentation. The present investigation could provide detailed information for the quality control and evaluation of trifoliate oranges during the fermentation process.

Open access

Abstract  

This work studied a way to reclaim uranium from contaminated UO2 oxide scraps as a sinterable UO2 powder for UO2 fuel pellet fabrication, which included a dissolution of the uranium oxide scraps in a carbonate solution with hydrogen peroxide and a UO4 precipitation step. Dissolution characteristics of reduced and oxidized uranium oxides were evaluated in a carbonate solution with hydrogen peroxide, and the UO4 precipitation were confirmed by acidification of uranyl peroxo–carbonate complex solution. An agglomerated UO4 powder obtained by the dissolution and precipitation of uranium in the carbonate solution could not be pulverized into fine UO2 powder by the OREOX process, because of submicron-sized individual UO4 particles forming the agglomerated UO4 precipitate. The UO2 powder prepared from the UO4 precipitate could meet the UO2 powder specifications for UO2 fuel pellet fabrication by a series of steps such as dehydration of UO4 precipitate, reduction, and milling. The sinterability of the reclaimed UO2 powder for fuel pellet fabrication was improved by adding virgin UO2 powder in the reclaimed UO2 powder. A process to reclaim the contaminated uranium scraps as UO2 fuel powder using a carbonate solution was finally suggested.

Restricted access