Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Yuliia Lyndina x
  • Refine by Access: All Content x
Clear All Modify Search
Interventional Medicine and Applied Science
Authors: Anatolii Romaniuk, Yuliia Lyndina, Vladyslav Sikora, Mykola Lyndin, Ludmyla Karpenko, Oksana Gladchenko, and Igor Masalitin


This article is devoted to the investigation of the structural features of the bone marrow of mature rats.

Materials and methods

The investigation of the structural features of the bone marrow was performed on the femurs of the mature male rats. General structure of the organ was studied with hematoxylin–eosin and Van Gieson staining of samples. Certain features of the bone marrow structure were studied using immunohistochemical method (CD3, CD79α, S100, myeloperoxidase, and cyclin D1).


We can state that stromal–parenchymal structure is typical for the bone marrow of rats as for any other organ. The stromal component is presented with bone tissue (48.8 ± 3.3% at epiphyses), the net of blood vessels (18.7 ± 2.1%), fat tissue (11 ± 2%), fibrous tissue (0.7 ± 0.2%), and the network of reticular fibers. Hematopoietic tissue covers 20.9 ± 3.7% at the femoral epiphyses and 69.6 ± 2.2% at diaphysis. Among these tissues, myelopoiesis occupies 74.2 ± 4.7%, erythropoiesis – 24.3 ± 4.7%, and lymphopoiesis – less than 5%. Megalokaryocytes take 0.1–0.3%.


Considering the lack of significant anatomical, morphological, and histological differences of red bone marrow of rats and humans, we can state that hematopoiesis in rats takes place on the basis of the same principles as in humans, although it has certain mechanisms.

Open access
Interventional Medicine and Applied Science
Authors: Anatolii Romaniuk, Mykola Lyndin, Roman Moskalenko, Yevhen Kuzenko, Oksana Gladchenko, and Yuliia Lyndina

Materials and Methods: Chemical composition was studied with the help of the scanning electron microscope with energy-dispersion spectrometer. Immunohistochemical reaction showed the p53 and Ki-67 receptors expression. The study of DNA fragmentation was performed in agarose gel. Results: There was an interrelation between the accumulations of the trace elements with the degree of cancer malignancy. There were 85% of cases with positive reaction to Ki-67 and 40% cases with positive reaction to p53. We found a moderate correlation between the accumulation of microelements in the breast cancer tissue and the level of proliferative activity. We noted the combination of the increase of DNA fragmentation with the expression of p53 and Ki-67 receptors. Conclusions: The trace elements can cause the initiation and the progression of the tumorous growth, which is expressed in the increased proliferation of tumor cells. This leads to the destabilization of the genetic material which can be expressed in the synthesis of mutant p53 protein. Finally, it leads to the block of apoptosis and regulatory effects of cells. This can cause the tumor progression and the destabilization of the genome, which is reflected in the increased DNA fragmentation.

Open access