Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Yvonne Anna Minar x
Clear All Modify Search

We present a two-dimensional (2D) planar chromatographic separation method for phytoestrogenic active compounds on RP-18 W (Merck, 1.14296) phase. It could be shown that an ethanolic extract of liquorice (Glycyrrhiza glabra) roots contains four phytoestrogenic active compounds. As solvent, in the first direction, the mix of hexane, ethyl acetate, and acetone (45:15:10, v/v) was used, and, in the second direction, that of acetone and water (15:10, v/v) was used. After separation, a modified yeast estrogen screen (YES) test was applied, using the yeast strain Saccharomyces cerevisiae BJ3505. The test strain (according to McDonnell) contains the estrogen receptor. Its activation by estrogen active compounds is measured by inducing the reporter gene lacZ which encodes the enzyme β-galactosidase. This enzyme activity is determined on plate by using the fluorescent substrate MUG (4-methylumbelliferyl-β-d-galactopyranoside). The enzyme can also hydrolyse X-β-Gal (5-bromo-4-chloro-3-indoxyl-β-d-galactopyranosid) into β-galactose and 5-bromo-4-chloro-3-indoxyl. The indoxyl compound is oxidized by oxygen forming the deep-blue dye 5,5β-dibromo-4,4β-dichloro-indigo which allows to detect phytoestrogenic activity more specific in the presence of native fluorescing compounds.

Restricted access

We present a planar chromatographic separation method for the phytoestrogenic active compound equol, separated on RP-18 W (Merck, 1.14296) phase. It could be shown that an ethanolic cattle manure extract contains this phytoestrogenic active compound to a larger amount. As solvents for the mobile phase, hexane, ethyl acetate, and acetone (45:15:10, v/v); acetone and water (15:10, v/v); and n-hexane, CH2Cl2, ethyl acetate, methanol, and formic acid (40:40:20:5:1, v/v) have been used. After separation, a modified yeast estrogen screen (YES) test was applied, using the yeast strain Saccharomyces cerevisiae BJ3505 containing an estrogen receptor. Its activation by equol induces the reporter gene lacZ which encodes the enzyme β-galactosidase. The enzyme activity is measured directly on the TLC plate by using the substrate MUG (4-methylumbelliferyl-β-d-galactopyranoside) or the substrate X-β-Gal (5-bromo-4-chloro-3-indoxyl-β-d-galactopyranoside). β-Galactosidase cleaves MUG into a fluorescing compound. X-β- Gal is also hydrolyzed and then oxidized by oxygen forming the deep-blue dye 5,5′-dibromo-4,4′-dichloro-indigo. Both reactions in combination with a thin-layer chromatography (TLC) separation allow very specific detecting of equol in cattle manure, although that is a very challenging matrix. Preliminary results show that the average content of equol in liquid manure is roughly 60 μg g−1. The value for urine is 50 μg mL−1.

Restricted access