Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Z Sarbak x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Decomposition and removal of carbonizate was performed over platinum catalysts supported on two types of alumina differing in the surface area: low surface area one (LSA) and high surface one (HSA). For the sake of comparison, the performance of platinum catalyst supported on silica and bimetallic platinum-rhenium catalysts was analyzed. It has been shown that all platinum catalysts examined caused an increase in the removal of carbonizate. The activity of these catalysts was independent of the kind of support applied or addition of rhenium as a second component.

Restricted access

Abstract  

This study presented results on reduction of alumina supported chromium and platinum–chromium catalysts using temperature programmed reduction method (TPR). It has been shown that catalysts after earlier oxidation step but without calcinations one undergo reduction in lower temperature in comparison to calcined only catalysts. Moreover, addition platinum to Cr/Al2O3 catalysts also caused decrease of reduction temperature. It has been observed that over the examined catalysts oxidation CO to CO2 and reduction CO to CH4 occurs. However, on Pt–Cr catalysts both reactions proceed at lower temperature compare to Cr catalysts.

Restricted access

Abstract  

Alumina supported Mo and Pt-Mo catalysts was subject to temperature programmed reduction (TPR) using H2 and CO. After earlier oxidation step TPR–H2 profiles shows different surface species, which depends on the composition of the catalysts and reduction temperature. Change in reducing gas from H2 into CO results in significant changes in catalyst system. Hydrogen causes a decrease in oxidation number of metals, while carbon monoxide reacts with chemisorbed chemicals.

Restricted access

Decomposition and removal of carbonizate was performed over platinum catalysts supported on two types of alumina differing in the surface area: low surface area one (LSA) and high surface one (HSA). For the sake of comparison, the performance of platinum catalyst supported on silica and bimetallic platinum-rhenium catalysts was analyzed. It has been shown that all platinum catalysts examined caused an increase in the removal of carbonizate. The activity of these catalysts was independent of the kind of support applied or addition of rhenium as a second component.

Restricted access

Abstract  

Carbonizate as a model soot has been submitted to oxidation using Al2O3, Cr2O3, Ni2O3 and Fe2O3 as catalysts in the temperature range from RT up to 1000C. The results obtained indicate that Fe2O3 is the most active catalyst in soot oxidation. However, all the catalysts examined are active in transformation of carbonizate components. It has been shown that DTA and TG methods can be used as fast methods testing the carbonizate oxidation.

Restricted access

Abstract  

Thermal behaviour of raw fly ashes-wasted products from various Polish power plants has been investigated using X-ray diffractions (XRD), Fourier transform infrared spectroscopic (FT-IR), differential thermal analysis (DTA) and thermogravimetry (TG). On the basis of the DTA and TG analysis differentiation between examined ashes has been made, which could not be achieved by XRD and FT-IR methods.

Restricted access