Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Z. A. Siddiqui x
  • Refine by Access: All Content x
Clear All Modify Search

Effects of Meloidogyne incognita, Alternaria dauci and Fusarium solani were studied on carrot (Daucus carota L.) growth, chlorophyll, carotenoid and proline contents in different types of soil. Plants grown in 20:80 and 40:60% sand:clay soil mixtures showed a significant increase in root dry weight, chlorophyll and carotenoid contents compared to plants grown in 100% clay soil. However, use of 60:40 sand:clay resulted in a similar root dry weight, chlorophyll and carotenoid contents as was found in carrots grown in 100% clay soil. Inoculation of plants with M. incognita, A. dauci or F. solani caused a significant reduction in root dry weight, chlorophyll and carotenoid contents in all soil types as compared to their respective control. Inoculation of plants by A. dauci caused the greatest reduction in root dry weight followed by F. solani and M. incognita in different sand and clay mixtures. Use of 20:80, 40:60 or 60:40 sand:clay mixtures caused a significant increase in proline content of plants over those grown in 100% clay soil. Similarly, inoculation of M. incognita, A. dauci and F. solani caused a significant increase in proline content in all soil types compared to their respective control.

Restricted access

Effects of fly ash amendments in soil (0%, 25% and 50% vol/vol), Ralstonia solanacearum, Meloidogyne incognita and Phomopsis vexans were observed on the growth, chlorophyll and carotenoid contents of eggplant. Addition of 25% fly ash in soil caused a significant increase in plant growth, chlorophyll and carotenoid contents over plants grown without fly ash. However, amendments of 50% fly ash in soil had an adverse effect on the growth, chlorophyll and carotenoid contents of eggplant. Inoculation of the pathogens caused a significant reduction in growth, chlorophyll and carotenoid contents. Inoculation of R. solanacearum caused the greatest reduction followed by P. vexans and M. incognita. Root galling and nematode multiplication was reduced with the increase in fly ash. Wilting and blight indices were 3 in plants grown in 0% and 25% fly ash amended soil while 4 in 50% fly ash amended soil.

Restricted access

The economic threshold level of Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani were determined on carrot (Daucus carota L.) under greenhouse conditions. The results revealed that plant length, plant fresh weight, shoot and root dry weight, chlorophyll and carotenoid decreased progressively with the corresponding increase in the inoculum levels of each pathogen. The significant reduction in plant growth parameters, chlorophyll and carotenoid occurred when 2000 or more second stage juveniles (J2s) of M. incognita, 1.0 g or more inoculum of A. dauci or R. solani per kg soil were inoculated. Maximum reduction in plant growth attributes, chlorophyll and carotenoid occurred at the highest inoculum level of the test pathogens. Increase in the inoculum level of M. incognita caused an increase in the number of root galls, while the multiplication of nematode was found inversely related to the inoculum density. The increase in the inoculum levels of A. dauci and R. solani resulted in a progressive increase in leaf blight and crown rot indices and caused a higher reduction in plant growth parameters. The damaging threshold level of M. incognita was 2000 J2 per kg soil while 1.0 g per kg soil of A. dauci or R. solani was threshold level on carrot. The assessment of infestation levels of test pathogens will enable growers to cost-effectively select and implement the management tactics.

Restricted access

Effect of Graphene oxide (GO) was observed on Meloidogyne incognita and Macrophomina phaseolina and on the growth of lentil in pot experiment. Treatment of plants with 10 ml solution of GO with 125, 250 and 500 ppm concentration caused a significant increase in plant dry weight over control. Inoculation of plants with M. incognita or M. phaseolina caused a significant reduction in plant dry weight over uninoculated control. Treatment of plants with 125, 250 and 500 ppm GO and subsequent inoculation with M. incognita or M. phaseolina caused a significant increase in plant dry weight over plants inoculated without GO pretreatment. Treatment of 500 ppm GO caused a greater increase in plant dry weight of M. incognita or M. phaseolina inoculated plants followed by 250 ppm and 125 ppm. Numbers of nodules per root system were high in plants without pathogen. Inoculation of M. incognita or M. phaseolina caused reduction in nodulation. However, treatment of GO in all the three concentrations had no significant effect on nodulation in plants both with and without pathogens. Treatment of GO resulted in reduced galling, nematode multiplication and root-rot index. Greater reduction in galling, nematode multiplication and root-rot index were observed in plants treated with 500 ppm GO followed by 250 ppm and 125 ppm. Indices were reduced to 4, 3 and 2, respectively, when plants with M. phaseolina were treated with 125, 250 and 500 ppm GO. This study shows that the use of GO is useful for the management of M. incognita and M. phaseolina on lentil.

Restricted access

Effects of ZnO nanoparticles (NPs) were studied on lentil plants inoculated with Alternaria alternata, Fusarium oxysporum f. sp. lentis, Xanthomonas axonopodis pv. phaseoli, Pseudomonas syringae pv. syringae and Meloidogyne incognita. Plant growth, chlorophyll, carotenoid contents, nitrate reductase (NR) activity and nodulation of lentil both in the presence and absence of Rhizobium sp. were examined in a pot test. Inoculation of plants with A. alternata / F. oxysporum f. sp. lentis / X. axonopodis pv. phaseoli / P. syringae pv. syringae or M. incognita caused a significant reduction in plant growth, number of pods per plant, chlorophyll, carotenoids and NR activity over uninoculated control. Inoculation of plants with Rhizobium sp. with or without pathogen increased plant growth and number of pods per plant, chlorophyll, carotenoids and NR activity. When plants were grown without Rhizobium, a foliar spray of plants with 10 ml solution of 0.1 mg ml–1of ZnO NPs per plant caused a significant increase in plant growth and number of pods, chlorophyll, carotenoid contents and NR activity in both inoculated and uninoculated plants. Spray of ZnO NPs to plants inoculated with Rhizobium sp. caused non significant increase in plant growth, number of pods per plant, chlorophyll, carotenoid contents and NR activity when plants were either uninoculated or inoculated with pathogens. Numbers of nodules per root system were high in plants treated with Rhizobium sp. but foliar spray of ZnO NPs had adverse effect on nodulation. Inoculation of plants with test pathogens also reduced nodulation. Spray of ZnO NPs to plants reduced galling, nematode multiplication, wilt, blight and leaf spot disease severity indices.

Restricted access