Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Z. Peredy x
  • Refine by Access: All Content x
Clear All Modify Search


High-performance internal combustion engines are subject to severe torsional vibrations which result from uneven gas and inertial loads. Fatigue damage occurs if the frequency of these undesired oscillations matches the resonance frequency of the crankshaft and the driven engine elements. This phenomenon can be avoided by the application of visco-dampers whose working fluid is high-viscosity silicone oil. Since silicone oil is exposed to a significant amount of heat load during operation, it is essential to calculate the temperature distribution in a relatively easy, quick, and cost-efficient way for lifetime estimation purposes. The aim of this article is to develop a reliable, fast, and accurate finite difference-based numerical method for steady-state thermal calculations for arbitrary damper sections. The developed MATLAB code calculates the temperature field of the damping fluid together with all components in a radial cross-section at given operational conditions. The accuracy of the developed thermal calculation method has been tested in a 3-dimensional – 2-dimensional two-step verification process by finite element and finite volume-based advanced engineering software in ANSYS environment. Furthermore, the original Iwamoto equation available in the literature has been updated to provide more accurate surface temperature results based on the simulations' outcome gained by the finite volume method.

Open access