Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Z. She x
  • All content x
Clear All Modify Search


The uranium(VI) accumulation was studied in detail by using the biomass of mangrove endophytic fungus Fusarium sp.#ZZF51 from the South China Sea. The uranium(VI) biosorption process onto the tested fungus powders was optimized at pH 4.0, adsorption time 60 min, and uranium(VI) initial concentration 50 mg L−1 with 61.89% of removal efficiency. According to Fourier transform infrared spectra for the tested fungus before and after loaded with uranium(VI), the results showed that both of hydroxyl and carboxyl groups acted as the important roles in the adsorption process. In addition, the experimental data were analyzed by using parameter and kinetic models, and it was obtained that the Langmuir isotherm model and the pseudo-second-order kinetic model provided better correlation with the experimental data for adsorption of uranium(VI).

Open access

Waxy wheat (Triticum aestivum L.) is grown throughout the world for its specific quality. Fertilization and planting density are two crucial factors that affect waxy wheat yield and photosynthetic capacity. The objectives of the research were to determine the effects of fertilization and planting density on photosynthetic characteristics, yield, and yield components of waxy wheat, including Yield, SSR, TGW, GNPP, GWPP, PH, HI, Pn, Gs, Ci, E and WUE using the method of field experiment, in which there were three levels (150, 300, and 450 kg ha−1) of fertilizer application rate and three levels (1.35, 1.8, and 2.25 × 106 plants ha−1) of planting density. The results suggested that photosynthetic characteristics, yield, and yield components had close relationship with fertilization levels and planting density. Under the same plant density, with the increase of fertilization, Yield, SSR, TGW, GNPP, GWPP, HI, Pn, Gs, E and WUE increased and then decreased, PH increased, but Ci decreased. Under the same fertilization, with the increase of plant density, Yield, SSR, TGW, GNPP, GWPP, HI increased and then decreased, PH, Pn, Gs and E increased, PH and WUE declined. The results also showed that F2 (300 kg ha−1) and D2 (1.8 × 106 plants ha−1) was a better match in this experiment, which could obtain a higher grain yield 4961.61 kg ha−1. Consequently, this combination of fertilizer application rate and plant densities are useful to get high yield of waxy wheat.

Restricted access