Search Results

You are looking at 1 - 10 of 15 items for

  • Author or Editor: Z. Takács x
Clear All Modify Search

The spores of 6 species of arbuscular mycorrhizal (AM) fungi (Glomeromycota) were collected, described and illustrated in three different habitats of semiarid open sandy grasslands in Hungary (Nagykáta, Domonyvölgy, Fülöpháza). Glomus constrictum, G. corymbiforme, G. microcarpum, Sclerocystis sinuosa, Scutellospora dipurpurescens, and S. persica are reported firstly from Hungary.

Restricted access
Acta Agronomica Hungarica
Authors: R. Ahmadvand, A. Takács, J. Taller, I. Wolf and Z. Polgár

Potato (Solanum tuberosum L.) is the fourth most important food crop in the world. It is the most economically valuable and well-known member of the plant family Solanaceae. Potato is the host of many pathogens, including fungi, bacteria, Phytoplasmas, viruses, viroids and nematodes, which cause reductions in the quantity and quality of yield. Apart from the late blight fungus [Phytophthora infestans (Mont.) de Bary] viruses are the most important pathogens, with over 40 viruses and virus-like pathogens infecting cultivated potatoes in the field, among which Potato virus Y (PVY), Potato leaf roll virus (PLRV), Potato virus X (PVX), Potato virus A (PVA), Potato virus S (PVS) and Potato virus M (PVM) are some of the most important viruses in the world. In this review, their characteristics and types of resistance to them will be discussed.

Restricted access

Abstract  

The use of the 99Mo 99mTc generator in nuclear medicine is well established world wide. The production of the 99Mo (T1/2 = 66 h) parent as a fission product of 235U is largely based on the use of reactor technology. From the early 1990's accelerator based production methods to provide either direct produced 99mTc or the parent 99Mo, were studied and suggested as potential alternatives to the reactor based production of 99Mo. A possible pathway for the charged particle production of 99mTc and 99Mo is irradiation of molybdenum metal with protons via the reaction 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo, respectively. The earlier published excitation functions show large differences in their maximum that result in large differences in the calculated yields. We therefore decided to study the excitation function for these proton-induced reactions. In this work the newly measured excitation functions as well as an evaluation of earlier measured data and a discussion of the observed disagreements are presented.

Restricted access

Summary  

Excitation functions of proton induced nuclear reactions on natural Te were investigated up to 18 MeV. Cross sections for production of 121,123,124,126,128,130gI and 121gTe were measured. The new experimental data were compared with the results of ALICE-IPPE model calculations and with data found in the literature and measured on natural or enriched Te targets. The new data can be effectively used for validation of recommended cross sections of medically relevant 123I and 124I.

Restricted access
Acta Biologica Hungarica
Authors: P. Fancsovits, Zsuzsa G. Tóthné, Á. Murber, F. Z. Takács, Z. Papp and J. Urbancsek

First polar body (PB) morphology of human oocytes can indicate further embryo development and viability. However, controversial data have been published in this topic. Our retrospective study analyses the fertilization and further development of oocytes in relation to different morphological features of the first PB. The morphology of 3387 MII oocytes from 522 in vitro fertilization (IVF) treatments were assessed before intracytoplasmic sperm injection (ICSI). Oocytes were classified according to their first PB morphology. Assessment of fertilization and embryonic development (cell number, embryo grade, amount of anuclear fragmentation and presence of multinucleated blastomeres) was performed 16-20 and 42-48 hours after ICSI. Our results show that fertilization rate and embryo quality is influenced by PB morphology, while speed of development is not affected by the morphology of the first PB. Contrary to previous findings, our results suggest that oocytes with a fragmented PB had a higher developmental ability than those with an intact PB. However, we observed a lower viability of oocytes with a large PB. Since there are contradictions in this and previous observations, an extensive study is needed with standard hormonal stimulation protocol and oocyte evaluation criteria.

Restricted access
Cereal Research Communications
Authors: Z. Áy, Z. Kerényi, A. Takács, M. Papp, I. Petróczi, R. Gáborjányi, D. Silhavy, J. Pauk and Z. Kertész

The reliable monitoring of field virus infections of crop species is important for both farmers and plant breeders. The aim of this study was to detect virus infections of winter wheat in the 2006/2007 season. Twelve well-known winter wheat varieties were sown on two different dates (11 th of October and 3 rd of November 2006). Leaves of two individuals from each genotype were collected on 23rd of April 2007 to detect the virus infections ( Barley stripe mosaic virus — BSMV, Barley yellow dwarf virus — BYDV-PAV, Wheat dwarf virus — WDV and Wheat streak mosaic virus — WSMV) after an extra mild autumn- and wintertime. Virus infections were detected by enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). The aphid-transmitted BYDV-PAV was found frequently whereas other viruses were presented very rarely or were not detected. Forty-six per cent of the tested wheat plants proved to be infected by BYDV-PAV in ELISA, while using PCR, the virus infections with BYDV-PAV was found in 58% of the samples. Further, these results suggest that the optimal sowing time is critical in the control of cereal virus diseases, and additionally, that wheat varieties respond to the virus infections differently.

Restricted access

Male Wistar rats wearing chronically implanted cortical electrodes were exposed to Mn-containing nanoparticles via the airways for 8 weeks following a 2-week pre-exposure period. The rats’ cortical electrical activity and open field motility was recorded simultaneously, in weekly repetitions. It was supposed that this technique can provide better insight in the development of Mn-induced CNS damage. Decreased motility (less distance covered, longer periods of immobility) and increased total power of cortical electrical activity developed in parallel in the first 4–5 weeks of treatment but showed little change afterwards. Both the behavioral and the electrophysiological effect were in fair correlation with the rats’ internal Mn exposure determined from brain samples. The results confirmed the non-linear dose- and time-dependence of Mn effects suggested by previous studies. Repeated simultaneous behavioral and electrophysiological recording during a longer treatment with neurotoxic metals (or other xenobiotics) seems to be a promising method.

Restricted access

The plant hormone ethylene or the gaseous signalling molecule nitric oxide (NO) may enhance salt stress tolerance by maintaining ion homeostasis, first of all K+/Na+ ratio of tissues. Ethylene and NO accumulation increased in the root apices and suspension culture cells of tomato at sublethal salt stress caused by 100 mM NaCl, however, the induction phase of programmed cell death (PCD) was different at lethal salt concentration. The production of ethylene by root apices and the accumulation of NO in the cells of suspension culture did not increase during the initiation of PCD after 250 mM NaCl treatment. Moreover, cells in suspension culture accumulated higher amount of reactive oxygen species which, along with NO deficiency contributed to cell death induction. The absence of ethylene in the apical root segments and the absence of NO accumulation in the cell suspension resulted in similar ion disequilibrium, namely K+/Na+ ratio of 1.41 ± 0.1 and 1.68 ± 0.3 in intact plant tissues and suspension culture cells, respectively that was not tolerated by tomato.

Restricted access

The nucleus accumbens (NAcc), an important basal forebrain structure, has a central integratory function in the control of feeding and metabolism. The primary cytokine interleukin-1β (IL-1β) exerts its neuromodulatory effects on the endocrine functions both centrally and peripherally. The present study was designed to elucidate the possible consequences of direct administration of IL-1β into the NAcc on the endocrine regulation of metabolism. Plasma concentrations of insulin and leptin, two key hormones in the homeostatic control were determined 15 minutes after a single bilateral microinjection of IL-1β into the NAcc of adult male Wistar rats, and the effects were compared with those found in vehicle treated control animals. Insulin plasma levels of the cytokine treated animals were significantly higher than those parameters of the control rats. No differences were found in leptin plasma concentrations between the two groups. Our findings show that IL-1β mediated processes in the NAcc have important roles in the central neuroendocrine control.

Restricted access

The mediodorsal prefrontal cortex (mdPFC) is a key structure of the central glucose-monitoring (GM) neural network. Previous studies indicate that intracerebral streptozotocin (STZ) microinjection-induced destruction of local chemosensory neurons results in feeding and metabolic alterations. The present experiments aimed to examine whether STZ microinjection into the mdPFC causes metabolic deficits. To do so, glucose tolerance test (GTT) and measurements of plasma metabolites were performed in STZ-treated or control rats. Intraperitoneal D-glucose load was delivered 20 min or 4 weeks following the intracerebral microinjection of STZ or saline (acute or subacute GTT, respectively). The STZ-treated rats displayed acute glucose intolerance: at the 120th min of the test, blood glucose level of these rats was significantly higher than that of the ones in the control group. When determining the plasma level of various metabolites, 30 min following the intracerebral STZ or saline microinjection, the triglyceride concentration of the STZ-treated rats was found to be reduced compared with that of the control rats. The GM neurons of the mdPFC are suggested to be involved in the organization of complex metabolic processes by which these chemosensory cells contribute to adaptive control mechanisms of the maintenance of homeostasis.

Restricted access