Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Z.X. Lu x
  • All content x
Clear All Modify Search

Hydroponic studies were conducted to investigate the role of iron plaque on transport and distribution of chromium (Cr) by rice seedlings. Microscopical observations indicate that iron plaque developed quickly at the root surface of rice seedlings, but the distribution of iron plaque was more intense near root base and less towards root tip. Results showed that rice seedlings exposed to Cr(III) depicted significantly higher capacity for Cr accumulation in plant tissues than Cr(VI) in the presence of iron plaque. However, transport of Cr within plant cells was more evident in Cr(VI) treatment with iron plaque than Cr(III) treatment. Results also showed that there are significant impact on transport of K, Mn and Zn in rice seedlings treated with Cr(VI) in the presence of iron plaque, while significant effect on transport of Mn and Zn were observed in Cr(III)-treated rice seedlings. Results from detached root test provide additional evidence to confirm the presence of iron plaque, that had different impact on Cr uptake when Cr(VI) or Cr(III) was supplied.

Restricted access

Abstract  

Polyacrylamide (PAM), poly(N,N-dimethylacrylamide) (PDMA) and poly(N,N-diethylacryl-amide) (PDEA) were synthesized by plasma-initiated polymerization. Both wet and dry polymers were prepared. The states of the water absorbed in the wet and dry samples were studied directly by means of TG, and the stabilities of the dry polymers in the process of thermal treatment were investigated by FT-IR. The activation energy of release of the bonded water was calculated by the Kissinger method. The water absorbed in the polymers was found to be in two states, i.e. weakly-bonded water and bonded water, and the absorbed water content varied with the monomer concentration, the plasma duration time and the type of polymer.

Restricted access

Abstract  

Chemical elemental compositions of some silicate, magnetic and glass spherules were investigated with INAA. The elements determined include Os, Ir, Ni, Co, Fe, Cr, Au, La, Ce, Sm, Eu, Yb, Lu and Sc etc. The elemental correlation, as well as their enrichment (or depletion) factors relative to Cl chondrite were examined. The high concentrations of the refractory siderophile elements contained in these spherules support the proposal that they originate from extraterrestrial substances. Some useful chemical criteria for identifying the sources of silicate, magnetic and glass spherules are put forward.

Restricted access

Analysis of the binding interaction of (−)-epigallocatechin-3-gallate (EGCG) and pepsin is important for understanding the inhibition of digestive enzymes by tea polyphenols. We studied the binding of EGCG to pepsin using fluorescence spectroscopy, Fourier transform infrared spectroscopy, isothermal titration calorimetry, and protein-ligand docking. We found that EGCG could inhibit pepsin activity. According to thermodynamic parameters, a negative ΔG indicated that the interaction between EGCG and pepsin was spontaneous, and the electrostatic force accompanied by hydrophobic binding forces may play major role in the binding. Data from multi-spectroscopy and docking studies suggest that EGCG could bind pepsin with a change in the native conformation of pepsin. Our results provide further understanding of the nature of the binding interactions between catechins and digestive enzymes.

Restricted access

Abstract  

The recombination of hydrogen and oxygen in technical gaseous waste of nuclear power plants in enlarged scale experiment has been studied on the basis of our previous work.1 The catalyst and its best operating conditions for recombination of hydrogen and oxygen determined in a small scale experiment were demonstrated and tested. The results show that the data obtained in an enlarged scale experiment agreed well with that of in a small scale test. The recombination rate of H2 and O2 was higher than 98.3% and 99.98% respectively. After recombination, the residual concentrations of H2 and O2 in waste gas were O2<3 ppm, H2<400 ppm. The Pd-Al2O3 catalyst and operating conditions determined for gaseous waste processing of nuclear power plants were satisfactory.

Restricted access

Summary

The ripe fruits of Schisandrae chinensis have a long history of use in traditional Chinese medicine to treat diseases and improve health. There is substantial evidence that lignan constituents are mainly responsible for the beneficial effects of this plant medicine. The amounts of the major bioactive lignans in this plant vary widely with species, habitat, and the collecting time, and as such, establishment of an HPLC fingerprint for quality control of this herbal medicine is of particular importance. To achieve this, ten batches of Fructus schisandrae chinensis were collected from Tieli, in China, and their chemical components were analyzed under optimized HPLC conditions. On the basis of the chromatographic data, a consistent HPLC fingerprint pattern containing 20 common peaks was obtained. Among these common peaks, six were identified as schizandrin, schizandrol B, schisantherin, deoxyschiandrin, γ-schizandrin B, and schizandrin C. On the basis of this HPLC fingerprint and principal-components analysis, the quality of fifteen samples from different producing areas of China was objectively assessed, and the species difference between Fructus schisandrae sphenantherae and Fructus schisandrae chinensis was clearly differentiated. To summarize, the data described in this study offer valuable information for quality control and proper use of Fructus schisandrae chinensis.

Restricted access

Abstract  

Nuclear microprobe was used to measure single aerosol particles (SAPs) indoors from Shanghai. Every particle is characterized with its micro-PIXE spectrum, which can be considered as the fingerprint of the SAPs. The pattern recognition technique (PR) was applied to trace the SAPs back to their source. Results of five monitor homes at different locations in Shanghai show that most of the measured indoor aerosol particles are derived from soil dust, cement dust, vehicle exhaust, coal boilers and steel mill dust.

Restricted access

Abstract  

The power vs. time curves of the promoter bacteria of a nutrient drug were determined by using a 2277 Thermal Activity Monitor (Sweden). A new experimental model of bacterial growth were established. The growth rate constant, heat output and optimum concentration of specific promoter bacterial of nutrient drug were calculated.

Restricted access

Aegilops sharonensis (Sharon goatgrass) is a valuable source of novel high molecular weight glutenin subunits, resistance to wheat rust, powdery mildew, and insect pests. In this study, we successfully hybridized Ae. sharonensis as the pollen parent to common wheat and obtained backcross derivatives. F1 intergeneric hybrids were verified using morphological observation and cytological and molecular analyses. The phenotypes of the hybrid plants were intermediate between Ae. sharonensis and common wheat. Observations of mitosis in root tip cells and meiosis in pollen mother cells revealed that the F1 hybrids possessed 28 chromosomes. Chromosome pairing at metaphase I of the pollen mother cells in the F1 hybrid plants was low, and the meiotic configuration was 25.94 I + 1.03 II (rod). Two pairs of primers were screened out from 150 simple sequence repeat markers, and primer WMC634 was used to identified the presence of the genome of Ae. sharonensis. Sequencing results showed that the F1 hybrids contained the Ssh genome of Ae. sharonensis. The sodium dodecyl sulfate polyacrylamide gel electrophoresis profile showed that the alien high molecular weight glutenin subunits of Ae. sharonensis were transferred into the F1 and backcross derivatives. The new wheat-Ae. sharonensis derivatives that we have produced will be valuable for increasing resistance to various diseases of wheat and for improving the quality of bread wheat.

Restricted access

The aphid Sitobion avenae F. is one of the most harmful pests of wheat growth in the world. A primary field screening test was carried out to evaluate the S. avenae resistance of 527 wheat landraces from Shaanxi. The results indicated that 25 accessions (4.74%) were resistant to S. avenae in the three consecutive seasons, of which accession S849 was highly resistant, and seven accessions were moderately resistant. The majority of S. avenae resistant accessions come from Qinling Mountains. Then, the genetic variability of a set of 33 accessions (25 S. avenae resistant and 8 S. avenae susceptible) originating from Qinling Mountains have been assessed by 20 morphological traits and 99 simple sequence repeat markers (SSRs). Morphological traits and SSRs displayed a high level of genetic diversity within 33 accessions. The clustering of the accessions based on morphological traits and SSR markers showed significant discrepancy according to the geographical distribution, resistance to S. avenae and species of accessions. The highly and moderately resistant landrace accessions were collected from the middle and the east part of Qinling Mountains with similar morphology characters, for example slender leaves with wax, lower leaf area, and high ear density. These S. avenae resistant landraces can be used in wheat aphid resistance breeding as valuable resources.

Restricted access