Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Zbigniew Olszak x
Clear All Modify Search

LetM be a 3-dimensional quasi-Sasakian manifold. On such a manifold, the so-called structure function β is defined. With the help of this function, we find necessary and sufficient conditions forM to be conformally flat. Next it is proved that ifM is additionally conformally flat with β = const., then (a)M is locally a product ofR and a 2-dimensional Kählerian space of constant Gauss curvature (the cosymplectic case), or (b)M is of constant positive curvature (the non cosymplectic case; here the quasi-Sasakian structure is homothetic to a Sasakian structure). An example of a 3-dimensional quasi-Sasakian structure being conformally flat with nonconstant structure function is also described. For conformally flat quasi-Sasakian manifolds of higher dimensions see [O1]

Restricted access

Summary  

Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(M,J,g)$ \end{document} be a K\"ahler--Norden manifold. Using the notions of the horizontal and vertical lifts, a class of almost complex structures \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\widetilde J$ \end{document} is defined on the tangent bundle \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $T\!M$ \end{document}, and necessary and sufficient conditions for such a structure to be integrable (complex) are described. Next, a class of pseudo-Riemannian metrics \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\widetilde g$ \end{document} of Norden type is defined on \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $T\!M$ \end{document}, for which \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\widetilde J$ \end{document} is an antiisometry. Thus, the pair \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(\widetilde J,\widetilde g)$ \end{document} becomes an almost complex structure with Norden metric on \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $T\!M$ \end{document}. It is checked whether the structure \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(\widetilde J,\widetilde g)$ \end{document} is K\"ahler--Norden itself.

Restricted access

Summary  

At first, a necessary and sufficient condition for a Khler-Norden manifold to be holomorphic Einstein is found. Next, it is shown that the so-called (real) generalized Einstein conditions for Khler-Norden manifolds are not essential since the scalarcurvature of such manifolds is constant. In this context, we study generalized holomorphic Einstein conditions. Using the one-to-one correspondence between Khler-Norden structures and holomorphic Riemannian metrics, we establish necessary and sufficient conditions for Khler-Norden manifolds to satisfy the generalized holomorphic Einstein conditions. And a class of new examples of such manifolds is presented. Finally, in virtue of the obtained results, we mention that Theorems 1 and 2 of H. Kim and J. Kim [10] are not true in general.

Restricted access

Abstract

It is proved that every concircularly recurrent manifold must be necessarily a recurrent manifold with the same recurrence form.

Restricted access