Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Zengchao Zhang x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The sorption of Cd(II) from aqueous solution on γ-Al2O3 was investigated under ambient conditions. Experiments were carried out as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid and temperature. The results indicated that the sorption of Cd(II) was strongly dependent on pH and ionic strength. At low pH, the sorption of Cd(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on γ-Al2O3 surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were used to simulate the sorption isotherms at three different temperatures. The thermodynamic data (ΔG 0, ΔS 0, ΔH 0) calculated from the temperature dependent sorption isotherms suggested that the sorption of Cd(II) on γ-Al2O3 was an spontaneous and endothermic process.

Restricted access

Abstract  

Bentonite was investigated to remove Ni(II) from aqueous solutions because of its strong sorption ability. Herein, bentonite was modified with sodium carboxymethylcellulose (CMC) and used as an adsorbent to remove Ni(II) from aqueous solutions. The results indicated that CMC-bentonite had higher sorption capacity than bare bentonite in the sorption of Ni(II) from aqueous solutions. Sorption of Ni(II) on CMC-bentonite was mainly dominated by ion exchange or outer-sphere surface complexation at low pH values, but by inner-sphere surface complexation or surface precipitation at high pH values. The thermodynamic data calculated from temperature dependent sorption isotherms indicated that the sorption of Ni(II) to CMC-bentonite hybrids was an spontaneous process and enhanced with increasing temperature.

Restricted access

Abstract  

The sorption of Co(II) from aqueous solution on Na-rectorite was investigated under ambient conditions. Experiments were carried out as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid and temperature. The results indicated that the sorption of Co(II) was strongly dependent on pH. At low pH the sorption was dominated by outer-sphere surface complexation or ion exchange, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were used to simulate the sorption isotherms at three different temperatures. The thermodynamic data (∆G 0, ∆S 0, ∆H 0) were calculated from the temperature dependent sorption isotherms and the results suggested that the sorption process of Co(II) on Na-rectorite was spontaneous and endothermic. Experimental results indicate that Na-rectorite is a suitable adsorbent for preconcentration and solidification of Co(II) from large volumes of aqueous solutions.

Restricted access