Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Zhangyong Ning x
Clear All Modify Search

Infection of host cells with the influenza virus is mediated by specific interactions between the viral haemagglutinin (HA) and cell oligosaccharides containing sialic acid (SA) residues. Avian and human influenza viruses bind to alpha-2, 3 and alpha-2, 6 sialic acid-linked receptors, respectively. To date, there have been no detailed tissue distribution data on alpha-2, 3 and alpha-2, 6 sialic acid-linked receptors in the domestic cat, a relatively new mammalian host for influenza virus infections. In this study, the tissue distribution of human and avian type sialic acid influenza receptors was determined in various organs (respiratory tract, gastrointestinal tract, brain, cerebellum, spleen, kidney, heart and pancreas) of domestic cat by binding with the lectins Maackia amurensis agglutinin II (MAA II) and Sambucus nigra agglutinin (SNA), respectively. The results revealed that both alpha-2, 3 and alpha-2, 6 sialic acid-linked receptors were extensively detected in the trachea, bronchus, lung, kidney, spleen, pancreas and gastrointestinal tract. Endothelial cells of gastrointestinal tract organs were negative for alpha-2, 3 sialic acid-linked receptors in cats. The presence of alpha-2, 3 and alpha-2, 6 sialic acid-linked receptors in the major organs examined in the present study suggests that each major organ may be affected by influenza virus infection. Because of receptor distribution in the gastrointestinal tract, the experimental infection of cats with human influenza virus may be relatively easy while their infection with avian influenza virus may be difficult. These data can explain the involvement of multiple organs in influenza virus infection and should help investigators interpret the results obtained when cats are infected with influenza virus and estimate the risk of infection between cats and humans.

Restricted access

The NOD-like receptor protein 3 (NLRP3) inflammasome comprised of NLRP3, ASC and caspase-1 plays an important role in the inflammatory and innate immune response. However, little is known about the expression pattern and histological distribution of these genes in goat. Here, we first cloned the fulllength cDNAs of the NLRP3, ASC and caspase-1 genes of Hainan black goat and produced their polyclonal antibodies. Tissue-specific expression and histological distribution of these genes were analysed. Phylogenetic analysis revealed that these three goat genes had high homology with Bos taurus genes and low homology with avian or fish genes. After immunisations with these recombinant Histagged proteins, the titres of antiserum were higher than 1:1024 and purified IgG was obtained. These three genes were expressed in all examined tissues, the mRNA expression level of NLRP3 and caspase-1 was most abundant in the spleen and mesenteric lymph nodes (MLNs), while ASC was primary expressed in the liver, spleen and kidney. The histological distribution of NLRP3, ASC and caspase-1 was detected in myocardial cells, hepatocytes, focal lymphocytes, bronchiolar epithelial cells, renal tubular epithelial cells, cortical neurons and endothelial cells of the germinal centres in the MLNs. These results will be helpful in further investigations into the function of the NLRP3 inflammasome and in elucidating its role in caprine inflammatory diseases.

Restricted access

Interferon regulatory factor 7 (IRF7) is essential for the induction of an antiviral response. Previous studies have shown that virus replication causes the activation or expression of Type I interferon (IFN) in cells, which further activates IFN-stimulated genes (ISGs) to retard virus growth. In this study, after infection of chicken embryo fibroblasts (CEFs) with the lentogenic Newcastle disease virus (NDV) strain LaSota or the velogenic NDV strain GM, the mRNA and protein levels of IRF7 showed a significant increase, and part of the IRF7 protein was translocated from the cytoplasm to the nucleus. In order to further explore the effect of IRF7-mediated innate immune response on the replication of NDV in CEFs, the mRNA levels of IFN-α, IFN-β and STAT1 were measured and the replication kinetics of NDV determined. The results showed that specific siRNA could inhibit the expression of IRF7 and limit the mRNA level of IFN-α, IFN-β and STAT1 and, accordingly, the replication kinetics of both NDVs were enhanced after the inhibition of IRF7. In conclusion, IRF7 is an important nuclear transcription factor for the induction of Type I IFNs during the antiviral response, which can affect the replication of NDV and spread to CEFs in the early phase of viral infection.

Restricted access