Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Zhiyi Wang x
  • All content x
Clear All Modify Search
Acta Chromatographica
Authors: Liyi Li, Liming Hu, Bingbao Chen, Yanwen Dong, Zixia Lin, Zhiyi Wang, Congcong Wen, Xianqin Wang, and Shuanghu Wang

In this study, we developed a urine metabolomic method by gas chromatography–mass spectrometry (GC–MS) combination with biomedical results to evaluate the effect of activated carbon on methomyl poisoning rats. The rats were divided into four groups, methomyl group, two activated carbon treatment group, and control group. According to the biochemical results, it indicated that activated carbon treated rats could cause liver and kidney function changes. According to the urine metabolomics results, activated carbon treatment group (10 min) and activated carbon treatment group (30 min) could be distinguished from methomyl group, and activated carbon treatment group (10 min) could be separated from activated carbon treatment group (30 min) rats, which indicated that the treatment of rats by activated carbon in different time had a different effect. The results indicate that metabolomic method by GC–MS may be useful to elucidate activated carbon treated on methomyl poisoning rats.

Open access
Acta Chromatographica
Authors: Shuanghu Wang, Zixia Lin, Ke Su, Jing Zhang, Lijing Zhang, Zhimou Gao, Zhiyi Wang, Jianshe Ma, and Xianqin Wang

The rats were randomly divided into paraquat group, curcumin treatment group, and pirfenidone treatment group. The concentration of paraquat in rat plasma was determined by an ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method over the range of 10–2000 ng mL−1. Chromatographic separation was achieved on a BEH HILIC (2.1 mm × 100 mm, 1.7 μm) column. The mobile phase was consisted of acetonitrile and 10 mm ammonium formate buffer (containing 0.1% formic acid) with gradient elution pumped at a flow rate of 0.4 mL min−1. Protein precipitation with acetonitrile was used as sample preparation. Compared with the paraquat group, there is statistical toxicokinetic difference for curcumin treatment group and pirfenidone treatment group, AUC(0 − t) decreased (P < 0.05), clearance (CL) increased (P < 0.05) for curcumin or pirfenidone treatment group, and Cmax decreased (P < 0.05) for curcumin treatment group. The results showed that treatment by curcumin and pirfenidone could relieve acute paraquat poisoning in rats.

Open access