Search Results
You are looking at 1 - 1 of 1 items for
- Author or Editor: Zrinka Franušić x
- Refine by Access: All Content x
Studia Scientiarum Mathematicarum Hungarica
Author:
Zrinka Franušić
We characterize the existence of infinitely many Diophantine quadruples with the property
D
(
z
) in the ring ℤ[1 + \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\usepackage{bbm}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$\sqrt d$$
\end{document} )/2], where
d
is a positive integer such that the Pellian equation
x
2
−
dy
2
= 4 is solvable, in terms of representability of
z
as a difference of two squares.