Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Zsuzsanna Ujfaludi x
  • Refine by Access: All Content x
Clear All Modify Search

The p53 tumour suppressor plays central role in the maintenance of genome integrity. P53 deficient fruit flies are highly sensitive to ionizing radiation (IR) and show genome instability suggesting that the Drosophila melanogaster p53 ( Dmp53 ) is necessary for the proper damage response upon IR. We found that Dmp53 null fruit flies are highly sensitive to ultraviolet radiation (UV) as well. We analyzed the expression levels of apoptotic genes in wild type and Dmp53 null mutant animals after UV or IR using quantitative real-time RT-PCR. Ark (Apaf-1related killer) was induced in a Dmp53-dependent way upon UV treatment but not by IR, hid ( head involution defective/ wrinkled ) was induced upon both types of DNA damage, while reaper was induced only upon IR but not UV treatment. Using microarray analysis we identified several further genes that are activated upon UV irradiation in the presence of wild type Dmp53 only. Some but not all of these genes show Dmp53-dependent activation upon IR treatment as well. These results suggest that Dmp53 activates distinct cellular pathways through regulation of different target genes after different types of DNA damage.

Restricted access

Using yeast two-hybrid screens we determined that Drosophila (Dm)p53 interacts with proteins involved in sumoylation (UBA2, UBC9 and PIAS) through different regions of its C-terminal domain. A K302R point mutation within a single canonical sumoylation site of Dmp53 did not abolish the observed interactions. These observations prompted us to analyze whether Dmp53 sumoylation at this site has any functional role in vivo. Genetic assays showed that deleting one copy of genes involved in sumoylation (lwr, Su(var)2–10 or smt3 heterozygosity) enhanced slightly the mutator phenotype of Dmp53. We compared the in vivo effects of wild type and K302R Dmp53 overproduced from transgenes and determined that similar levels of expression of the mutant and wild type proteins resulted in similar phenotype, and the two proteins showed similar cellular localization. The half life and the trans-activator activity of K302R mutant and wild type Dmp53 were also comparable. Lastly, by analyzing wild type and K302R Dmp53 expressed at different levels in animals and in S2 cells we detected no differences between the mobility of the mutant and wild-type protein. From these data we conclude that under normal developmental conditions the loss of SUMO modification at K302 does not affect Dmp53 function significantly.

Restricted access