Search Results

You are looking at 21 - 30 of 34 items for :

  • "Prime number" x
Clear All

Abstract  

A well known conjecture about the distribution of primes asserts that between two consecutive squares there is always at least one prime number. The proof of this conjecture is quite out of reach at present, even under the assumption of the Riemann Hypothesis. This paper is concerned with the distribution of prime numbers between two consecutive powers of integers, as a natural generalization of the afore-mentioned conjecture.

Restricted access

Abstract  

Combining Goldston-Yildirim’s method on k-correlations of the truncated von Mangoldt function with Maier’s matrix method, we show that

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Xi _r : = \lim \inf _{n \to \infty } \tfrac{{p_{n + r} - p_n }} {{\log p_n }} \leqq e^{ - \gamma } \left( {r - \tfrac{{\sqrt r }} {2}} \right)$$ \end{document}
for all r ≧ 1 where p n denotes the nth prime number and γ is Euler’s constant. This is the best known result for any r ≧ 11.

Restricted access

Let V be the 2-dimensional column vector space over a finite field

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q$$ \end{document}
(where q is necessarily a power of a prime number) and let ℙq be the projective line over
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q$$ \end{document}
. In this paper, it is shown that GL 2(q), for q ≠ 3, and SL 2(q) acting on V − {0} have the strict EKR property and GL 2(3) has the EKR property, but it does not have the strict EKR property. Also, we show that GL n(q) acting on
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left( {\mathbb{F}_q } \right)^n - \left\{ 0 \right\}$$ \end{document}
has the EKR property and the derangement graph of PSL 2(q) acting on ℙq, where q ≡ −1 (mod 4), has a clique of size q + 1.

Restricted access

MOTOHASHI, Y., Lectures on sieve methods and prime number theory , Tata Institute of Fundamental Research, Lectures on Mathematics and Physics, 72 , Published for the Tata Institute of Fundamental Research

Restricted access

Amer. Math. Monthly 89 126 – 129 10.2307/2320934 . [10] Selberg , A. 1950 An elementary proof of the prime-number theorem for

Restricted access

generalized Vaughan’s identity , Canadian J. Math. 34 ( 1982 ), 1365 – 1377 . MR 84q:10075 [5] H ua , L. K. , Some results in the additive prime number theory

Restricted access

in the additive prime number theory , Quart. J. Math. , 9 ( 1938 ), 68 – 80 . [8] L i , H. and P an , H. , A density version of Vinogradov's three primes theorem

Restricted access

Summary  

Recently, Goubin, Mauduit, Rivat and Srkzy have given three constructions for large families of binary sequences. In each of these constructions the sequence is defined by modulo \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $p$ \end{document} congruences where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $p$ \end{document} is a prime number. In this paper the three constructions are extended to the case when the modulus is of the form \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $pq$ \end{document} where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $p$ \end{document}, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $q$ \end{document} are two distinct primes not far apart (note that the well-known Blum-Blum-Shub and RSA constructions for pseudorandom sequences are also of this type). It is shown that these modulo \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $pq$ \end{document} constructions also have certain strong pseudorandom properties but, e.g., the (``long range'') correlation of order \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $4$ \end{document} is large (similar phenomenon may occur in other modulo \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $pq$ \end{document} constructions as well).

Restricted access

] Hua , L. K. 1938 Some results in prime number theory Q.J. Math. 9 68 – 80 10.1093/qmath/os-9.1.68 . [5

Restricted access

. Soc. 2006 140 1 13 Hua, L. K. , Some results in the additive prime number

Restricted access