Search Results

You are looking at 31 - 40 of 571 items for :

  • "grain yield" x
Clear All

., Behl, R.K. 2010. Grain yield in wheat as affected by short periods of high temperature, drought and their interaction during pre- and post-anthesis stages. Cereal Res. Commun. 38 :514–520. Behl R

Restricted access

corn leaf blight and maximize grain yield . Fields Crop. Res. 139 : 20 – 29 . Bowen , K.L. , Pedersen , W.L. 1988 . Effects of propiconazole on Exserohilum turcicum

Restricted access

. Tayyar , S. 2010 . Variation in grain yield and quality of Romanian bread wheat varieties compared to local varieties in northwestern Turkey . Romanian Biotechnol. Letters 15 : 5189 – 5196

Restricted access

There was a significant interaction effect between the variety and the sowing date for the number of productive tillers, indicating that the response to sowing date varied with the variety. A significant reduction in the number of productive tillers became evident when sowing was delayed till 26 June in the straggling variety as compared to sowing dates in May. Lower numbers of productive tillers were also recorded when the sowing of the erect variety was further delayed till 10 July. The grain yield data showed that it is not advisable to sow the straggling variety later than 12 June, while sowing may continue till about 26 June for the erect variety in the study area.

Restricted access

This study aimed to analyze drought tolerance in bread wheat by examining the effect of soil water deficit on yield performance of synthetic bread wheat derivatives. Thirteen genotypes of synthetic bread wheat derivatives selected from a backcross (Cham 6 ///Haurani / Ae. tauschii ICAG400709 //Cham 6) were used for field evaluation in two experimental sites for two consecutive years. In addition, three synthetic wheat genotypes grown under different planting dates were compared for yield performance. Grain yield was highly correlated with harvest index under all of four cropping environments. No significant contribution of biomass to the grain yield was found in these plant materials. Late planting generated plant growth under the drier soil conditions after the heading time than under normal planting conditions, which resulted in considerable grain yield reduction. A synthetic wheat genotype selected from the materials showed significantly higher grain yield under late planting condition than the check variety, Cham 6. These results suggest that higher grain yield in a synthetic bread wheat genotype is associated with rapid translocation of photosynthetic carbohydrates to the grains after heading time.

Restricted access

Soil management practices that utilize organic matter have great potential to increase productivity in sub-Saharan Africa. Field studies were carried out between September 1995 and August 1998 to determine the effects of three leguminous crop species: velvet bean ( Mucuna pruriens var. utilis ), groundnut ( Arachis hypogaea L.) and cowpea ( Vigna unguiculata (L.) Walp), and inorganic fertilizer on the soil properties and succeeding maize grain yield when grown in rotation on a sandy soil classified as Haplic Lixisol in the forest-savannah transition zone of Ghana. The legumes were established in the minor seasons and maize in all the plots in the major cropping seasons. A 2 × 3 factorial design laid out in a randomized complete block was used. The main plots consisted of three leguminous crop residues and the sub-plots of two fertilizer levels (0 and 45 kg N ha −1 , 19 kg P ha −1 , 19 kg K ha −1 ). The control consisted of maize following maize with the recommended fertilizer rate (90 kg N ha −1 , 37 kg P ha −1 , 37 kg K ha −1 ). On average the Mucuna plots added 4.0 t ha −1 of crop residue to the soil in a season and cowpea 1.0 t ha −1 . The preceding crops had little effect on the soil properties. Leaf area index, total dry matter and maize grain yields were significantly affected by fertilizer. The best maize grain yield (6787 kg ha −1 ) was recorded in the first year on Mucuna plots with half the recommended rate of fertilizer. The cropping sequence with Mucuna residue was the most efficient. The gap in maize grain yield between the fertilized and unfertilized treatments widened each successive year. The interaction between organic matter and fertilizer may have been limited due to the surface application of the organic residue.

Restricted access

Eleven spring wheat cultivars were compared in terms of the stability of their grain yield and grain quality. The cultivars’ stability was evaluated separately at two different crop management levels – moderate-input management and high-input management. Three stability models were used for the two crop management levels based on a linear mixed model framework with restricted maximum likelihood. The Shukla model was the most appropriate for the evaluation of stability of tested spring wheat cultivars. The thousand-grain weight, starch content, Zeleny sedimentation value and test weight were characterized, and the stability ranking cultivars at moderate-input management level was mostly consistent with the rank of cultivars 24 for high-input management level. For grain yield, grain protein content and wet gluten content, the stability rankings were not consistent. Cultivars ‘Monsun’ and ‘Parabola’ are the most stable cultivars for grain yield in moderate-input management and high-input management, respectively. Cultivar ‘Hewilla’ was the stable cultivar for all quality traits at moderate-input management. Cultivar ‘Arabella’ was the most stable cultivar at high-input management level.

Restricted access

The synthetic maize population 316PO2 was subjected to genetic correlation analyses between grain yield, yield components and morphological traits. The purpose was to enable estimates to be made of the advantage of using selection indices compared with selection based on grain yield only, and if that advantage was present, to choose enough simple selection indices for practical use. Selection indices were constructed out of four traits highly significantly correlated with grain yield, in addition to yield itself. Grain yield exhibited a highly significant additive genetic correlation with ear diameter (ra=0.588**), kernels row-1 (ra=0.643**), ears plant-1 (ra=0.871**) and ear height (ra=0.427**). The most efficient index was Index No. 14 (R.E.I12345= 108.83%), which included all four traits and grain yield. Index No. 3, one of the simplest forms of index, including only ears plant-1 and grain yield, showed slightly less relative efficiency (R.E.I35=107.24%) than Index No. 14. Using this simple form of index with two characters (Index No. 3) could improve the efficiency of selection for grain yield. The estimated advantage from its use is 179.6 kg/selection cycle for grain yield over selection based only on grain yield.

Restricted access

A long-term experiment was started in 2005 in the Agricultural Research Institute to monitor the effects of extreme climatic events on the grain yield, quality and disease resistance of cereals. The yield was poor in 2007 due to the long dry period from autumn till spring, while it was high in 2006 and 2008 when there was more precipitation. The grain quality was the highest in 2007, however, despite the extreme weather events. Fungicide treatment generally resulted in higher yield potential and better grain quality in every year.

Restricted access

There is a significant difference in the adaptability of qualified varieties. To determine which varieties can be grown profitably at different locations, it is necessary to know the characteristics and the ecological adaptability of the varieties. The present study was conducted to analyse the adaptability of 40 state-registered winter wheat varieties tested in small-plot comparative trials by the National Institute for Agricultural Quality Control based on their grain yield results. For the comparison of the varieties the evaluation method of Eberhart and Russell (1966) improved by Bed ő and Balla (1977) was applied. According to this method the varieties can be divided into three groups. Varieties with special adaptability include intensive high-yielding varieties, the genetic potential of which, owing to their weak stress tolerance, can be exploited only at locations with better than average characteristics. The yield stability of winter wheat varieties with average adaptability is good. Their grain yield is generally close to the site average, but under more favourable circumstances it exceeds the average at most sites. Varieties with good adaptability usually have low genetic yielding capacity, but can adapt to extensive circumstances better than the intensive varieties.

Restricted access