Search Results

You are looking at 41 - 50 of 213 items for :

  • "abiotic stress" x
Clear All

Numerous studies showed that lipid transfer proteins (LTPs) play important roles in flower, development, cuticular wax deposition and pathogen responses; however, their roles in abiotic stresses are relatively less reported. This study characterized the function of a maize LTP gene (ZmLTP3) during drought stress. ZmLTP3 gene was transferred into maize inbred line Jing2416; subsequently the glyphosate and drought tolerance of the over-expression (OE) lines were analyzed. Analysis showed that OE lines could significantly enhance drought tolerance. Transgenic maize lines OE6, OE7 and OE8 showed lower cell membrane damage, higher chlorophyll contents, higher protective enzymes activities, better growth and development under drought condition. The results strongly indicated that overexpression of ZmLTP3 could increase drought tolerances in maize.

Restricted access

Wild barley, Hordeum marinum subsp. gussoneanum (2n = 28) is a valuable source of genes that determine resistance to abiotic stresses. These resistance traits might be transferred to wheat due to the crossability of wild barley with bread wheat. The availability of reliable and rapid methods for the identification of H. marinum subsp. gussoneanum chromatin in a wheat background would facilitate the development of introgression wheat genotypes. For this purpose, we evaluated the applicability of eighty-seven H. vulgare EST markers for studying bread wheat – H. marinum subsp. gussoneanum substitution and addition lines. Of all of the markers studied, forty-three (49%) were amplified in H. marinum ssp. gussoneanum and wheat introgression lines. The identification of wild barley chromosomes using EST markers confirmed the GISH and C-banding data. Thus, it was established that the H. vulgare EST markers can be successfully used to identify the chromosomes of the H. marinum subsp. gussoneanum in introgression lines of wheat.

Restricted access

Alkaline and acidic pH of soil limit crop yield. Products of phenylpropanoid pathway play a key part in plant abiotic stress tolerance. It was aimed to assess efficacy of tyrosinepriming for activation of enzyme involved in phenolic accumulation induction of pH tolerance in maize seedlings. Seeds of two maize cultivars, namely Sadaf (pH tolerant) and S-2002 (pH sensitive), were grown under three pH levels (3, 7 and 11). Eight and twelve days old seedlings were harvested and parted into roots and shoots for the assessment of growth, enzymatic and non-enzymatic antioxidants. PAL activity was directly correlated with total soluble phenolics, flavonoids, growth and seedling vigour. Lower accumulation of phenolics and PAL activity in the pH sensitive (S-2002) cultivar indicated greater oxidative damage caused by pH extremes. Priming improved antioxidative potential by enhancing PAL activity and phenolics accumulation and hence increased growth in maize seedlings.

Restricted access

In the course of the Maize Consortium Project, investigations were made on the defence mechanisms employed by maize against various abiotic stress factors (low temperature, cadmium) and on the effects exerted by two compounds (S-methylmethionine, salicylic acid) capable of improving the stress resistance of plants to certain abiotic stresses. Salicylic acid (SA) was found to inhibit the uptake of cadmium (Cd), but caused damage to the roots, including a reduction in the activity of phytochelatin synthase (PCS), which meant that preliminary treatment with SA aggravated the damaging effect of Cd. It was also proved that as the result of 2-day treatment with Cd, there was a continuous rise in the Cd level in the plants, more Cd being accumulated in young leaves than in older ones. The PCS activity increased greatly after 24 hours, both in the leaves and in the roots, declining again after 2 days. The effect of SA was examined in both the hybrids and their parental lines, and the effect of this compound on the intensity of alternative respiration was also investigated. A comparison of chilling tolerance data and antioxidant enzyme activity indicated that these two parameters were not directly correlated to each other, i.e. antioxidant enzyme activity values could not be used to draw reliable conclusions on the chilling tolerance of maize lines and hybrids. With regard to the interaction between alternative respiration and salicylic acid, it was proved that exogenous hydrogen peroxide caused a similar increase in the ratio of alternative respiration to that observed after salicylic acid treatment. Abbreviations: SA, salicylic acid; Cd, cadmium; PCS, phytochelatin synthase; SMM, S-methylmethionine; PCs, phytochelatins; PAR, photosynthetically active radiation; TTC, triphenyl tetrazolium chloride; KCN, potassium cyanide; PSII, 2nd photochemical system; POD, guaiacol peroxidase; APX, ascorbate peroxidase; GR, glutathione reductase

Restricted access

Salinity is one of the major abiotic stress factors affecting series of morphological, physiological, metabolic and molecular changes in plant growth. The effect of different concentrations (0, 25, 50, 100 and 150 mM) of NaCl on the vegetative growth and some physiological parameters of karkade (Hibiscus sabdariffa var. sabdariffa) seedling were investigated. NaCl affected the germination rate, delayed emergence and retarded vegetative growth of seedlings. The length of seedling as well as the leaf area was significantly reduced. The fresh weight remained lower in NaCl treated seedlings compared to control. NaCl at 100 and 150 mM concentrations had significant effect on the dry matter contents of the treated seedlings. The chloroplast pigments in the treated seedlings were affected, suggesting that the NaCl had a significant effect on the chlorophyll and carotenoid biosynthesis. The results showed that the salt treatments induced an increase in proline concentration of the seedlings. The osmotic potential (ψs) of NaCl treated seedlings decreased with increasing NaCl concentrations. Salt treatments resulted in dramatic quantitative reduction in the total sterol percent compared with control ones. Salt stress resulted in increase and decrease of Na+ and K+ ions, respectively. NaCl salinity increased lipid peroxidation. SDS-PAGE was used to evaluate protein pattern after applying salt stress. High molecular weight proteins were intensified, while low molecular weight proteins were faint. NaCl at 100 and 150 mM concentration distinguished with new protein bands. Salt stress induced a new peroxidase bands and increased the band intensity, indicating the protective role of peroxidase enzyme.

Restricted access
Acta Biologica Hungarica
Authors: Viktória Bőhm, Dávid Fekete, Gábor Balázs, László Gáspár and Noémi Kappel

In order to evaluate the salinity tolerance of grafted watermelon, two sets of experiments were conducted in a growing chamber where ‘Esmeralda’ varieties were grafted onto interspecific squash (Cucurbita maxima Duch. × Cucurbita moschata Duch.) and Lagenaria siceraria rootstocks. Both non-grafted and self-garfted plants were used for control. For salt stress, 2.85 and 4.28 mM/l substrate doses of NaCl were added with each irrigation in 2 day intervals for a duration of 23 days. Interspecific-grafted plants showed the highest salinity tolerance as plant biomass and leaf area were not decreased but improved by salinity in most cases. Furthermore, transpiration and photosynthesis activity did not decrease as much as it did in the case of other grafting combinations. Interspecific and Lagenaria rootstocks showed sodium retention, as elevation of Na+ content in the leaves of these grafting combinations was negligible compared to self-grafted and non-grafted ones. Presumably abiotic stress tolerance can be enhanced by grafting per se considering measured parameters of self-grafted plants did not decrease as much as seen in non-grafted ones.

Restricted access

Finding and improving wheat cultivars with good adaptability to abiotic stress is an important objective in breeding programmes. An experiment was set up in the climate chamber of the Martonvásár phytotron to test the effect of heat and drought stress on two winter wheat varieties and one variety of durum. Wheat plants exposed to 35°C and drought during grain filling exhibited altered agronomic and grain quality characteristics. Drought was found to have a much greater influence on yield and quality than heat stress. Reductions in the unextractable polymeric protein fraction and the glutenin-to-gliadin ratio indicated poorer grain yield quality as a result of drought, despite higher protein content. Quality deterioration was observed after drought, while heat stress had no noticeable influence on the protein quality of the three wheat genotypes, measured using size exclusion high performance liquid chromatography (SE-HPLC). The durum variety had a better ratio of protein components and a significantly higher Zeleny value when exposed to heat stress, although it had the lowest grain yield and grain/straw ratio.The most significant negative correlation was observed between the Zeleny value and the unextractable polymeric protein (UPP%) fraction after heat treatment and between the relative protein content and the albumin+globulin % (AG%) in the case of drought. These correlations testify that these parameters play an important role in determining the baking quality of wheat flour.

Restricted access

Papaver somniferum produces secondary metabolites, which have important roles in their self-defence processes, in plant biochemistry and in allelochemistry. We can see that different stress effects change the quantity of alkaloids. The object of the experiments is, in what manner changes the content of alkaloids of poppy in case of irregular stress effects. Papaver somniferum (cv. 'Kék Duna', Budakalász) plants were grown for 2 months from seeds in quartz-sand (in natural light, temperature: 24-28 °C, in Knop's nutritive solution). In this paper we studied the alkaloid of poppy treated with two kind of stress factors: mycotoxin and drought, respectively. Both the quantity and the spectrum of alkaloids were measured after different separation procedures. Thin layer chromatography (TLC and HPTLC) and high performance liquid chromatography (HPLC) were applied. Content of the level of formaldehyde (HCHO) also increases in plants with different stress effects. Our presupposition is that the formation of methyl groups of poppy alkaloids takes place through HCHO. It gave us an opportunity to examine changing of formaldehyde (HCHO) level in biotic and abiotic stress situation. Formaldehyde in dimedone adduct form can be detected in injured tissues of Papaver somniferum. As a consequence, the stress effects can be detected in poppy plants by two kinds of method. At first we measured content of alkaloids. Drought stress produced a higher level of the alkaloids, but the mycotoxin stress did not show significant results.

Restricted access

Effective conservation of (semi-)natural habitats needs knowledge on the naturalness, the actual quality of a habitat or vegetation patch. Nevertheless, there are only a few studies have been published in this topic so far. During the MÉTA project, between 2002–2005, we have surveyed the semi-natural vegetation of Hungary and assessed the naturalness of the predefined 86 habitat types. In this paper we present the country scale analysis on the naturalness of these habitat types. We compared the naturalness of the individual habitat types and also habitat groups, as well as the naturalness of the physical macroregions of Hungary. Euhydrophyte habitats and habitats deserving high abiotic stress are the most natural ones, while secondary shrublands, uncharacteristic forests and grasslands are the less natural. For the forest habitats we compared and discussed the naturalness values given by the MÉTA mappers and the values gained in the TERMERD (assessing forest naturalness in Hungary) project. In case of regions, Kisalföld has the lowest naturalness, and surprisingly the quality of the Alföld and the Középhegység is nearly equal if we consider only the remained vegetation.

Restricted access

Genetic improvement in aluminium tolerance is one of the most cost-effective solutions to improve the productivity of wheat ( Triticum aestivum L.) in acid soils. Sources of tolerance to this abiotic stress within adapted germplasm are limited, so the identification and characterisation of new sources are of some priority for the future of plant breeding in target areas. The aim of this study was to evaluate the response to aluminium stress of an old Portuguese wheat collection and to select the most tolerant ones for genetic and breeding purposes. An old collection of Portuguese wheat cultivars and some ‘Barbela’ lines were tested and classified in relation to aluminium tolerance and compared to modern wheat cultivars using a hydroponic approach. Three bread wheat cultivars (‘Viloso Mole’, Magueija’ and ‘Ruivo’) showed greater tolerance to 5 ppm aluminium than the international wheat standard cultivar ‘BH1146’, and so represent excellent material for understanding the genetic control of aluminium tolerance. In addition, several accessions of the Portuguese landrace ‘Barbela’ were outstanding in terms of aluminium tolerance. In particular, line 7/72/92 had a pronounced advantage over ‘BH1146’ in terms of root regrowth.

Restricted access