Search Results

You are looking at 61 - 70 of 3,035 items for :

Clear All

Abstract  

The heat, equilibrium, and kinetics of adsorption of 1-ethoxy-2-propanol vapours on granulated activated carbon were determined simultaneously by a reaction calorimeter SETARAM C80 D at T=298.15 K at various relative vapour pressures (0.1< p/p s<0.8). The adsorption isotherm was correlated by the Freundlich equation. It was observed that the enthalpies of adsorption decrease slightly with increasing of the relative vapour pressure of the adsorptive. The rate of adsorption were calculated from analysis of the heat flux signals and it was found that the mass-transfer coefficient for 1-ethoxy-2-propanol vapours in granulated activated carbon increased with increasing relative vapour pressure of the adsorptive.

Restricted access

Abstract  

The kinetics of the thermal decomposition of ammonium perchlorate at temperatures between 215 and 260°C is studied, in this work, by measuring the sample mass loss as a function of time applying the isothermal thermogravimetric method. From the maximum decomposition rate – temperature dependence two different decomposition stages, corresponding to two different structural phases of ammonium perchlorate, are identified. For the first region (215–235°C), corresponding to the orthorhombic phase, the mean value of the activation energy of 146.3 kJ mol–1, and the pre-exponential factor of 3.43⋅1014 min–1 are obtained, whereas for the second region (240–260°C), corresponding to the cubic phase, the mean value of the activation energy of153.3 kJ mol–1, and the pre-exponential factor of 4.11⋅1014 min–1 are obtained.

Restricted access

Abstract  

The thermal decomposition behavior of hard coal fly ash (HCA2), obtained from the combustion of an Australian hard coal in thermoelectric power plants, in different atmospheres (air, N2 and N2-H2 mixture), was studied using thermogravimetry (TG), infrared-evolved gas analysis (IR-EGA), differential scanning calorimetry (DSC) and thermodilatometry (DIL) techniques. It was found that changing of the applied atmosphere affects the carbon content of the ash which results in different thermal decomposition behaviors. In air, the carbon content was oxidized to carbon dioxide before the decomposition of carbonate. In N2 or in N2-H2 atmospheres, the carbon content acts as a spacer causing a fewer points of contact between calcium carbonate particles, thus increasing the interface area which results in a decrease of the carbonate decomposition temperature. Following the carbonate decomposition, the iron oxide content of the ash undergoes a reductive decomposition reaction with the unburned carbon. This oxidation-reduction reaction was found to be fast and go to completion in presence of the N2-H2 mixture than in the pure nitrogen atmosphere due to the reducing effect of the hydrogen. The kinetics of the carbonate decomposition step, in air and N2-H2 mixture was performed under non-isothermal conditions using different integral methods of analysis. The dynamic TG curves obeyed the Avrami-Erofeev equation (A2) in air, and phase boundary controlled reaction equation (R2) in N2-H2 mixture. The change in the reaction mechanism and the difference in the calculated values of activation parameters with the change of the atmosphere were discussed in view of effect of the atmosphere on the carbon content of the ash.

Restricted access

Abstract  

Kinetics of oxidation of Fe-Cr steel containing 25 wt.-percent Cr was studied as a function of temperature (1023–1173 K) for up to 480 h in flowing air, which corresponds to SOFC cathode environment operating conditions. The oxidation process was found to be a parabolic, suggesting that the diffusion of ionic defects in the scale is the slowest, rate determining step and it occurs predominantly by short-circuit diffusion paths. Comparison of the determined activation energy of oxidation of the studied steel with literature data indicates that at 1098–1173 K the chromia scale grows by the outward solid-state diffusion of chromium interstitials, whereas at 1023–1098 K — through a significant contribution of counter-current oxygen/chromium diffusion along Cr2O3 grain boundaries. The oxide scales were composed mainly of Cr2O3 with a continuous thin Mn1.5Cr1.5O4 spinel layer on top of the chromia scale. The oxidation test results on Fe-25Cr steel demonstrate the applicability of the commercial type DIN 50049 stainless steel as interconnect for SOFC.

Restricted access

Abstract  

Four complexes of rare earth bromides with amino acids, REBr3·3L·3H2O (RE=La, Nd;L=glycine or alanine) were prepared and characterized by means of chemical analysis, elemental analysis, molar conductivity, thermogravimetry, IR spectra and X-ray diffraction. Their thermal decomposition kinetics from ambient temperature to 500°C were studied by means of TG-DTG techniques under non-isothermal conditions. The kinetic parameters (activation energyE and pre-exponential constantA) and the most probable mechanisms of thermal decomposition were obtained by using combined differential and integral methods. The thermal decomposition processes of these complexes are distinguished as being of two different types, depending mainly on the nature of the amino acid.

Restricted access
Restricted access

Abstract  

A modified first order kinetic law, which describes the roles of bound and unbound vacancies, is proposed in order to predict defect decay and short-range-order kinetics of quenched binary alloys during linear heating experiments. The model has been applied to differential scanning calorimetry (DSC) curves of Cu–5 at%Zn quenched from different temperatures. Activation energy for migration of solute-vacancy complexes was also assessed from the kinetics of short-range-order using DSC traces. A value of 89.50.32 kJ mol–1 was obtained. The relative contribution of bound and unbound vacancies to the ordering process as influenced by quenching temperature was determined. In conjunction, a parametric study of the initial total defect concentration and effective energy for defect migration was performed in order to envisage their influence on the calculated DSC profiles.

Restricted access

Abstract  

TNAZ (1,3,3-trinitroazetidine) is a relatively new, powerful, steam castable, strained ring explosive. Owing these characteristics it is of considerable interest to the energetic material community. A relatively high vapour pressure, volume contraction and formation of shrinkage cavities in the solidification of its melt may be considered as some of its disadvantages. The kinetics and heats of TNAZ sublimation and evaporation were studied by the non-isothermal and isothermal thermogravimetry method. The activation energy of 94-102 kJ mol-1 was found for TNAZ sublimation, while the activation energy of 60-81 kJ mol-1 was found for TNAZ evaporation. The enthalpy of TNAZ sublimation at the melting temperature was found to be 95 kJ mol-1, and the enthalpy of TNAZ evaporation equals 66 kJ mol-1.

Restricted access

Abstract  

The accuracy and scope of application of previously reported approximations of the temperature integral were evaluated. The exact solution was obtained independently by solving the temperature integral numerically be Simpson's rule, the trapezoidal rule and the Gaussian rule. Two new approximations have been proposed:

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\begin{gathered} P(X) = e^{ - x} (1/X^2 )(1 - 2/X)/(1 - 5.2/X^2 ) \hfill \\ P(X) = e^{ - x} (1/X^2 )(1 - 2/X)/(1 - 4.6/X^2 ) \hfill \\ \end{gathered}$$ \end{document}
whereX=E/RT. The first equation gives higher accuracy, with a deviation of less than 1% and 0.1% from the exact solution forX≥7 andX≥10, respectively. The second equation has a wider scope of application, with a deviation of less than 1% forX≥4 and of less than 0.1% forX≥35.

Restricted access