Search Results

You are looking at 1 - 10 of 16 items for :

  • "Critical micelle concentration" x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All

In this work, we investigated the lyotropic aggregation behaviour in dilute solutions of two synthetic glycolipids with same alkyl chain. The chemical structure of the carbohydrate headgroups is similar, nevertheless as reported the thermotropic phase behaviour is different. We found that the slightly tilted compound showing a complex thermotropic phase behaviour forms large aggregates with substructure already in dilute solutions and the significantly tilted compound with its simple thermotropic phase behaviour forms small spherical micelles near the CMC.

Restricted access

Abstract  

The micellization characteristics of sodium n-dodecyl sulfate (SDS) have been investigated by microcalorimetric technique at conditions close to the physiological ones. The thermodynamics of micellization were studied at 20, 25, 30, 35 and 40 °C in 50 mM HEPES buffer, pH 7.4 and 160 mM NaCl using isothermal titration calorimetric (ITC) technique. The calorimeter can operate in a stepwise addition mode, providing an excellent method of determination of critical micelle concentration (CMC) and enthalpy of demicellization (and hence micellization). It can as well distinguish between aggregating and non-aggregating amphiphiles (solutes) in solution. The dilution enthalpy (∆H dil) was calculated and graphed versus concentration in order to determine the micellization enthalpy (∆H mic) and CMC. In addition to the CMC and ∆H mic, the effective micellar charge fraction (α) of the ionic surfactant micellization process can also be determined from ITC curves. The Gibbs free energy of the micellization (∆G mic), entropy of the micellization (∆S mic), and specific heat capacity of the micellization (∆C P,mic) process have been evaluated by the direct calorimetric method (mass-action model) as well as by the indirect method of van’t Hoff by processing the CMC and α results of microcalorimetry at different temperatures. The differences of the results obtained by these two procedures have been discussed. The presence of NaCl (160 mM) in the solutions decreased the CMC of SDS. The enthalpy changes associated with micelle dissociation were temperature-dependent, indicating the importance of hydrophobic interactions. The ∆G mic was found to be negative, implying, as expected, that micellization occurs spontaneously once the CMC has been reached. The values of ∆G mic were found to become more negative with increasing temperature and the ∆S mic was found to decrease with increasing temperature in both models.

Restricted access

place in the c.m.c. region where the micelles formation process starts [ 16 , 17 ]. Therefore, it is generally accepted that the position of the inflection point corresponds to the critical micelles concentration c.m.c. Such an approach makes it

Restricted access

Abstract  

The molality dependence of specific conductivity of pentadecyl bromide, cetylpyridinium bromide and cetylpiridinium chloride in aqueous solutions has been studied in the temperature range of 30–45 °C. The critical micelle concentration (cmc) and ionization degree of the micelles, β, were determined directly from the experimental data. Thermal parameters, such as standard Gibbs free energy
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta G_{m}^{0} ,$$ \end{document}
enthalpy
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta H_{m}^{0}$$ \end{document}
and entropy
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta S_{m}^{0} ,$$ \end{document}
of micellization were estimated by assuming that the system conforms to the pseudo-phase separation model. The change in heat capacity on micellization
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta C_{p} ,$$ \end{document}
was estimated from the temperature dependence of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta H_{m}^{0} .$$ \end{document}
An enthalpy–entropy compensation phenomenon for the studied system has been found.
Restricted access

the critical micelle concentration (c.m.c.) within the temperature range investigated. In order to describe the plots of the enthalpy of dilution versus surfactant concentration we adopted the sigmoidal Boltzmann equation (SBE) but with some

Open access

Abstract  

Electrical conductivity of aqueous solutions of dodecylpyridinium chloride and bromide have been determined. From these data the critical micelle concentration (cmc) was determined. The thermal properties as standard Gibbs free energy, enthalpy and entropy of micellization was estimated from a uncharged-phase separation model and enables to obtain another properties like heat capacity of micellization and the relevant parameters in the minimum of temperature dependence of cmc. The enthalpy-entropy compensation was shown for the studied compounds.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: J. Galán, J. Del Castillo, A. González-Pérez, V. Fuentes-Vázquez, and J. Rodríguez

Abstract  

The specific conductivities of dodecylpyridinium chloride have been determinated in water-butanol/pentanol/hexanol solutions in the temperature range of 10 to 35C, and butanol, pentanol and hexanol concentrations up to 0.05 mol kg–1. From these data the temperature dependence of the critical micelle concentration, (cmc), was determined. The molar fraction of alcohol in the micelle was estimated using the theory suggested by Motomura et al. for surfactant binary mixtures. The standard Gibbs free energy of solubilization of alcohols in the micelles was worked out using the phase separation model.

Restricted access

Abstract  

The interactions of lysozyme and myoglobin with anionic surfactants (hydrogenated and fluorinated), at surfactant concentrations below the critical micelle concentration, in aqueous solution were studied using spectroscopic techniques. The temperature conformational transition of globular proteins by anionic surfactants was analysed as a function of denaturant concentration through absorbance measurements at 280 nm. Changes in absorbance of protein-surfactant system with temperature were used to determine the unfolding thermodynamics parameters, melting temperature, T m, enthalpy, ΔH m, entropy, ΔS m and the heat capacity change, ΔC p, between the native and denatured states.

Restricted access

Abstract  

The critical micelle concentrations and the enthalpies of micellization of alkyltrimethylammonium bromides having dodecyl, tetradecyl and hexadecyl hydrocarbon chains have been studied using surface tension and calorimetry measurements as a function of temperature. As expected, the change of critical micelle concentrations is very small with an increase of temperature of 10 deg whereas we observe a drastic change of the enthalpies of micellization. As it has been found by applying the Van't Hoff law to thecmc values at different temperatures, the calorimetric measurements show that the enthalpy of micellization, exothermic above a minimal temperature, becomes endothermic below this temperature.

Restricted access

Summary  

The interaction between the U(VI) and a sodium dodecyl sulfonate (SDS) micelle was studied for intensity and emission lifetime. The measurements of the uranyl ion were done in a 1M H3PO4 medium. The self quenching rate constant (k sq) shows a larger value in micellar than in a SDS monomeric solution. This fact should be interpreted by micelles favoring the localized concentration of UO2 2+ species. Dynamic and static quenching was observed in the interaction between uranyl ion and the surfactant monomer before the induced critical micelle concentration (icmc) (1 mM) yielding a value of K D = (134±2) . 10M-1 and K S= (16±2) . 102M-1 for the dynamic and static quenching constant, respectively. A quantitative description of the binding was obtained by monitoring the emission lifetime of the uranyl excited state as a function of the surfactant concentration (titration curve), assuming that the observed lifetime is related to a weighted fraction of rate constants for the bound and unbound species.

Restricted access