Search Results

You are looking at 1 - 10 of 57 items for :

  • Mathematics and Statistics x
  • All content x
Clear All

Abstract  

In this paper, in order to consider the problems of relative width on ℝd, we proposed definitions of relative average width which combine the ideas of the relative width and the average width. We established the smallest number M which make the following equality

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\overline K _\sigma (U(W_2^\alpha ),M(W_2^\alpha ),L_2 ({\mathbb{R}}^d )) = \overline d _\sigma (U(W_2^\alpha ),L_2 ({\mathbb{R}}^d ))$$ \end{document}
hold, where U(W 2 α) is the Riesz potential or Bessel potential of the unit ball in L 2(ℝk) and the notations
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\overline K _\sigma$$ \end{document}
(·, ·,L 2(ℝd)) and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\overline d _\sigma$$ \end{document}
(·, L 2(ℝd)) denote respectively the relative average width in the sense of Kolmogorov and the average width in the sense of Kolmogorov in their given order. In 2001, Subbotin and Telyakovskii got similar results on the relative width of Kolmogorov type. We also proved that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\overline K _\sigma (U(W_2^\alpha ) \cap B(L_2 (\mathbb{R}^d )),U(W_2^\beta ) \cap B(L_2 (\mathbb{R}^d ))L_2 (\mathbb{R}^d )) = \overline d _\sigma (U(W_2^\alpha ),L_2 (\mathbb{R}^d )),$$ \end{document}
where 0 × β × α.

Restricted access

Abstract  

In this paper, the smallest number M which makes the equality

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$K_n (W_2^{L_r } (T),MW_2^{L_r } (T),L_2 (T)) = d_n (W_2^{L_r } (T),L_2 (T))$$ \end{document}
valid, is established and the asymptotic order of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$K_n (W_2^{L_r } (T),W_2^{L_r } (T),L_q (T)),1 \leqslant q \leqslant \infty$$ \end{document}
, is obtained, where
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$W_2^{L_r }$$ \end{document}
(T) is a periodic smooth function class which is determined by a linear differential operator, K n(·, ·, ·) and d n(·, ·) are the relative width and the width in the sense of Kolmogorov, respectively.

Restricted access

Summary  

We give an exact estimate of the deviation of the "triangular" partial sums of the double Fourier-Hermite series of functions of the class L r 2(D) in the space L 2(Γ, e -x -y ).

Restricted access

Abstract  

We show that as processes in (c, d, t) ∈ C(R 2 × R + 1)

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\frac{{\int_c^d {(L_t^{x + h} - L_t^x )^2 dx - 4h} \int_c^d {L_t^x dx} }} {{h^{3/2} }}\mathop \Rightarrow \limits^\mathcal{L} \left( {\frac{{64}} {3}} \right)^{1/2} \int_c^d {L_t^x d\eta (x)}$$ \end{document}
as h → 0 for Brownian local time L t x. Here η(x) is an independent two-sided Brownian motion.

Restricted access

Реэюме  

Получены точные неравенства типа Джексона-Стечкина для ос-редненных с весом модулей непрерывности m-го (m ∈ ℕ) порядка. Для классов функций, определенных при помоши мажорант и укаэанных осредненных величин, вычислены точные эначения раэличных n-поперечников при выполнении определенных ограничений на мажоранты.

Restricted access

. Math. (Basel) , 76 ( 2001 ), 73 – 80 . [2] Cavalcante , W. and Pellegrino , D. , Geometry of the closed unit ball of the space of bilinear forms on l2 , arXiv : 1603.01535v2 . [3] Choi , Y. S. , Ki , H. and Kim , S. G. , Extreme

Restricted access