Search Results

You are looking at 1 - 2 of 2 items for :

  • "Spatial intensity" x
  • Refine by Access: All Content x
Clear All

The importance of accurate species databases is debated in the recent literature of biodiversity assessment, considering that limited resources for conservation could be better allocated to assessment based on cost effective biodiversity features. I aimed to provide an understanding of sampling bias and provide practical advice to minimize bias either before or after data collection. I used 10×10 km 2 UTM grid data for 121 land snail species to account for geographic and taxonomic sampling bias in Hungary. Sampling intensity corrected for species richness varied significantly among regions, although regions were not good predictors of sampling intensity. Residuals were significantly autocorrelated in 15 km distance, indicating small scale heterogeneity in sampling intensity compared to species richness. Sampling coverage and intensity were higher close to human settlements and sampling intensity was higher within protected areas than outside. Commonness of species was positively associated with sampling intensity, while some rare species were over-represented in the records. Sampling intensity of microsnails (<3 mm) was significantly lower than that of the more detectable large species (>15 mm). Systematic effects of the collecting methods used in malacological research may be responsible for these differences. Understanding causes of sampling bias may help to reduce its effects in ecological, biogeographical and conservation biological applications, and help to guide future research.

Restricted access

of the aperiodically modulated pulses in the spatial domain Fig. 5 Temporal-spatial intensity distribution of the focused pulses in the focal plane If the amplitude of the chirp function increases towards the edges of the mirror two almost merged peak

Open access