Search Results
.5: Programs for Machine Learning , Morgan Kaufmann: San Mateo, CA. C4.5: Programs for Machine Learning Picard, R. R. and K. N. Berk. 1990. Data
Pazzani, M. J. and D. Kibler. 1992: The utility of knowledge in inductive learning Machine Learning 9 : 57-94. The utility of knowledge in inductive learning Machine Learning
. Machine learning models for predicting species habitat distribution suitability: An example with Pinus sylvestris L. for the Iberian Peninsula. Ecol. Model. 197: 383–393. Furlanello C
12 149 152 Michalski, R. S., I. Bratko and M. Kubat (eds). 1998. Machine learning and data mining: Methods and Applications. Wiley, New York
Fitzgibbon, L. J., Dowe, D. L. and Allison, L. 2002. Univariate polynomial inference by Monte Carlo message length approximation. In: C. Sammut and A. G. Hoffman (eds.) Proceedings 19 th International Conference on Machine Learning (ICML’2002), Sydney
. Nonlinear Multivariate Analysis 1990 Globerson, A. and Tisby, N. 2003 Sufficient dimensionality reduction. J. Machine Learning
Langley, P. 1988. Trading off simplicity and coverage in incremental concept learning. Proc. 5th Internatl. Conf. Machine Learning, Ann Arbor, Morgan Kaufman, CA. pp. 73-86. Trading off simplicity and coverage in incremental
Conf. Machine Learning ECML-94, Catalina, Italy. Springer, Berlin, pp. 49-67. A context similarity measure 49 67
International Conference on Machine Learning , Morgan Kaufmann, San Francisco, CA. pp. 543-550. Bayesian temporal data clustering using hidden Markov model representation 543 550
9 43 53 Gamberger, D. and Lavra, N. 1997. Conditions for Occam's razor applicability and noise elimination. In: Proc. 9th European Conf. Machine